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This paper presents two approximate methods for multiattribute utility mea-
surement, SMARTS and SMARTER, each based on an ¢licitation procedure
for weights. Both correct an error in SMART, originally proposed by Edwards
in 1977, and in addition SMARTER is simpler to use. SMARTS uses linear
approximations to single-dimension utility functions, an additive aggregation
model, and swing weights. The paper proposes tests for the usability of these
approximations. SMARTER, based on a formally justifiable weighting proce-
dure developed by Barron and Barrett, uses the same procedures as SMARTS
except that it omits the second of two elicitation steps in swing weights,
substituting calculations based on ranks. It can be shown to perform about
98% as well as SMARTS does, without requiring any difficult judgments from
elicitees. © 1994 Academic Press, Inc.

This paper presents two methods of multiattribute utility measurement,
each based on an elicitation procedure for weights. Both are derived from
the spirit and the techniques of SMART (Simple Multi-attribute Rating
Technique), originally sketched by Edwards in 1971, and more fully pre-
sented and first named in 1977. SMARTS (SMART using Swings) reme-
dies an intellectual error of SMART by using an invention called swing
weights; as presented here, it has some other improvements also.

SMARTER (SMART Exploiting Ranks) uses Barron and Barrett’s (un-
der review) formally justifiable rank weights to eliminate the most difficult
judgmental step in SMARTS. A decision based on these weights, on
average, gains 98 to 99% of the utility obtainable by using full elicitation
of weights.

SMART should be dead; SMARTS replaced it some time ago.
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SMARTER is a dramatic improvement on SMARTS in ease of elicitation.
A returnable postcard can hold a SMARTER elicitation for prespecified
attributes; interviews are not needed. We think SMARTER is likely to
appeal to market researchers, public involvement specialists, and others
for whom easy remote elicitation is useful.

This paper assumes a single decision maker throughout; extension to
the case of an organization with reasonably agreed-on values is straight-
forward.

The next section of this paper is a succinct step-by-step description of
SMARTS and SMARTER, intended as a how-to-do-it checklist. The
checklist is not self-contained; in particular, Steps 7 and 8 are listed in it
but described later in the paper. After that, we discuss the two key ideas
underlying the paper: multiattribute utility and the strategy of heroic
approximation. Then come detailed discussions of technical and how-to-
do-it issues, keyed to the step in the procedures for SMARTS and
SMARTER to which each is relevant. A reader unfamiliar with these
ideas should read it from start to finish. A user, familiar with the ideas but
wanting to be reminded of the sequence of steps in the course of an
application, should find the checklist sufficient.

SMARTS AND SMARTER: TWO CHECKLISTS
SMARTS

Step 1: Purpose and decision makers. ldentify the purpose of the value
elicitation, and the individual, organization, or organizations whose val-
ues should be elicited. This procedure is complete when you can do two
things. (A) Make an explicit and exhaustive list of elicitees, or specify a
procedure for identifying elicitees that is guaranteed to produce an ac-
ceptable list. (B) Prepare explicit instructions specifying both the nature
of the structure and numbers to be elicited and the way in which they will
be used. These instructions may be intended for elicitees, but more often
are records and/or reminders for elicitor and client.

Step 2: Value tree. Elicit a structure (an objectives hierarchy or value
tree; see Keeney & Raiffa, 1976, or von Winterfeldt & Edwards, 1986, for
details) or a list of attributes potentially relevant to the purpose of the
value elicitation from each elicitee, or from face-to-face groups selected
to represent classes of elicitees. If possible, all elicitees should come to
agree on the structure and labels (not ranking or weights) of relevant
attributes. An approach to obtaining agreement is to include all suggested
attributes in an initial structure and then hold a group session that elim-
inates duplicates and inappropriate proposed attributes, relabels ambigu-
ously labeled attributes, restructures to correct partial overlaps, etc. Try
to avoid having too many attributes. If you have 12 or more, try to reduce
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the number (e.g., by combining related attributes; by redefining too-
specific attributes; by omitting unimportant attributes that, if retained,
would receive low weight). This advice pertains to attributes that are
actually scored (von Winterfeldt & Edwards, 1986, calls them twigs; a
more orthodox term is leaves). In a value tree, higher-order attributes that
are not directly scored help define and explicate those that are and are
useful in sensitivity analyses. Use as many of these as needed to make the
value tree make sense.

Step 3: Objects of evaluation. If the purpose of the elicitation did not
specify the objects of evaluation, use the attribute structure from Step 2
to invent some. As Keeney (1992) has pointed out, values define options.
Options, or outcomes of taking them, are normally the objects of evalu-
ation. The output of Step 3 should be either a full list of objects of eval-
uation, or a real or hypothetical sample of such objects at least as large as
the proposed number of attributes. In contexts such as competitions that
use multiattribute utilities as scores, the scoring rules must be well de-
fined before any entries are submitted; if so, only hypothetical entries can
be used in this step. In preparing hypothetical objects of evaluation, try to
anticipate the full range of scores you will later encounter for each attrib-
ute; a range that is a bit too wide is preferable to one that is substantially
too narrow—though a too-narrow range is not a disaster. In most other
contexts the objects of evaluation, and so the ranges of scores, are know-
able in advance.

Step 4: Objects-by-attributes matrix. Formulate a matrix of objects of
evaluation by attributes (like Table 1 of this paper). Its entries should be
scores, physical value-related measures, if available. If scores are not
available, its entries can be judged single-dimension utilities.

Step 5: Dominated options. Eliminate ordinally dominated options. Or-
dinal dominance can usually be recognized by visual inspection (see e.g.,
von Winterfeldt & Edwards, 1986, pp. 388-399). If you happen to notice
one or more cardinally dominated options, eliminate them also; this fur-
ther reduces the total number of options but is unlikely to affect the range
of any attribute. Check to make sure that elimination of a dominated
option has not substantially reduced any attribute ranges (by raising the
lowest available value). If elimination of an option has substantially re-
duced a range, consider whether the attribute is still worth using. If not,
return to Step 2 to eliminate the attribute.’

! Elimination of dominated options is not necessary; they fall out in the course of subse-
quent analysis if not eliminated at this point. But reconsideration of ranges as a result of such
eliminations can be useful. Ranges can shrink to zero, or to values so near zero that the
attribute is no longer worth considering. This is by no means guaranteed, but happens often
enough to justify at least elimination of ordinally dominated options.
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Step 6: Single-dimension utilities. Reformulate the entries of the ob-
jects-by-attributes matrix as single-dimensional utilities. To do so, first
test the linearity of single-dimension utilities for each dimension for which
physical scores are available. If use of linearity as an approximation is
justified, use the ranges of the scores, or a larger range if the actual range
seems too small and the full list of objects of evaluation is not available,
to specify upper and lower bounds for single-dimension utility functions.
Calculate single-dimensional utilities from linear equations for these func-
tions, or draw them as graphs and read off the points. If a linear approx-
imation is usable, this is a purely computational step. If scores are avail-
able but the test for linearity fails, you can use any of the single-dimension
utility elicitation methods spelled out in von Winterfeldt & Edwards
(1986).

If no physical measure relevant to the attribute is available, this step (or
its equivalent in Step 4) requires e¢licitation. Elicitees may be those who
wil] judge weights (at Steps 7 and 8) or may be individuals to whom the
weighters are willing to delegate the responsibility for providing single-
dimension utilities. (An example is a clothing manufacturer considering
which items of apparel to include in next year’s line. She might delegate
assessment of how well an item conforms to current imperatives of fash-
ion to an expert in her employ and might delegate assessment of the
marketability of that item to another expert. But she might retain for
herself the weighting task of judging how important relative to each other
fashion and ease of marketing are in choice among items. The latter task
seems to us to be the essence of value judgments and so the essence of
multiattribute utility measurement.)

At the end of this Step, all needed single-dimension utilities (except for
directly judged utilities for objects of evaluation not yet available) should
be known.

The final task in this Step is to test for conditional monotonicity (see the
technical discussion in this paper). If it is present, an additive model
should be an acceptable approximation. If not, nonadditive models ex-
plained in Keeney and Raiffa (1976) and von Winterfeldt and Edwards
(1986) can be used. What follows assumes an additive model. It also
assumes either that linearity of single-dimensional utilities is acceptable
as an approximation or that single-dimension utilities have been directly
elicited.

Step 7. Do Part 1 of swing weighting. Elicitation methods are described
below.

Step 8. Do Part 2 of swing weighting; elicitation methods are described
below. Calculate all multiattribute utilities.

Step 9. Decide.
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SMARTER

Steps 1-7 and 9 of SMARTER are identical with those same steps in
SMARTS. Step 8 is: use Table 2 or Eq. (2) directly to calculate weights.
Calculate all multiattribute utilities.

Basic Ideas underlying SMARTS and SMARTER

We next review the two key ideas underlying SMARTS and
SMARTER.

Multiattribute utility. Howard Raiffa presented the fundamental insight
underlying multiattribute utility in 1968 and expanded on it a very influ-
ential Technical Report in 1969. That insight is that if anything is valued
at all, it is valued for more than one reason. That is, any outcome of a
decision is most naturally described by a vector of numbers that relate to
value. The task facing the analyst who wishes to use those numbers to
guide decisions is to aggregate that vector into a scalar that the decision
maker wishes to maximize—a single number measured at least on an
interval scale. The definitive exposition of formally justified procedures
for doing this appears in Keeney and Raiffa’s (1976) book.

The theoretical literature on utility makes a major distinction between
values, appropriate to decision making in riskless situations, and utilities,
appropriate to decision making in contexts involving risk. We consider
that distinction spurious and so ignore it in this paper. The issues are
examined in detail in von Winterfeldt and Edwards (1986, see especially
pp. 211-215) and need not be reexamined here.

The strategy of heroic approximation. Two beliefs motivated SMART
and motivate SMARTS, SMARTER, and this paper. One is that simpler
tools are easier to use and so more likely to be useful. The second is that
the key to appropriate selection of methods is concern about the trade-off
between modeling error and elicitation error. Edwards originally invented
SMART in part because the judgments of indifference between pairs of
hypothetical options required by Keeney and Raiffa (1976) seemed diffi-
cult and unstable. He believed and we believe that more nearly direct
assessments of the desired quantities are easier and less likely to produce
elicitation errors. See Edwards, von Winterfeldt, and Moody (1988) for an
earlier presentation of the same view.

We call that view the strategy of heroic approximation. Users of that
strategy do not identify formally justifiable judgments and then figure out
how to elicit them. Rather they identify the simplest possible judgments
that have any hope of meeting the underlying requirements of multiat-
tribute utility measurement, and try to determine whether they will lead to
substantially suboptimal choices in the problem at hand. If not, they try
to avoid elicitation errors by using those methods.



SMARTS AND SMARTER 311

Whenever possible, we like to provide checks on the potential for error
in the methods we propose. Sensitivity analysis is, of course, the most
general of these. But it is not simple. This paper offers rules of thumb
about when not to use the methods we propose because the potential for
errors of significant size is unacceptably large. We believe, but have not
proved, that when these rules of thumb are satisfied, the potential for
error is small.

SMARTS uses the strategy of heroic approximation to justify linear
approximations of single-dimensional utility functions and use of an ad-
ditive aggregation model. For each, we offer a rule of thumb about when
not to use the approximation. SMARTER adds a third use: justification of
rank weights. We have not found a rule of thumb about when not to use
rank weights, but speculate that the potential for error from using the
version of them presented here is never large. A sensitivity analysis tool
for assessing error potential is described in the Appendix.

Technical Issues

What follows is a series of technical discussions linked to specific steps
of SMARTS, SMARTER, or both. Among other things, these discussions
spell out in detail the procedures we advocate for the more technical
Steps.

Single-dimension utilities (Links to Step 6). Step 4 in SMARTS or
SMARTER is to list some or all of the objects of evaluation along with
their scores on physical or judgmental measures related to their values or
utilities. A convenient structure for doing so is a rectangular matrix like
Table 1. At Step 4 these scores do not need to be (though they are allowed
to be) single-dimensional cardinal utilities. They only need to be numbers
such that a higher number is preferable to a lower one, in a value or utility
sense, i.¢., ordinal utilities.

Step 6 consists of rewriting the scores table that is the output of Step 4
so that its entries are single-dimension cardinal utilities, not physical
scores. A single-dimension cardinal utility is an interval-scale (or better)
measure of the value or desirability of an outcome to a decision maker.
The difference between it and an ordinal utility is that, on an interval scale
of value or utility, numerically equal differences in magnitude represent
equal differences in value or utility. In this paper, the unmodified words
utility or value always refer to a cardinal, not ordinal, quantity. A single-
dimension utility need not be a function of any physical or judged quan-
tity, but often it is. Such a function relates the utility or value or desir-
ability of some physical or judged quantity, u(x), to its magnitude, x.

Elicitation of the details of utility functions can be tedious and demand-
ing. The contribution of those details to wiser or more valuable choices
isoften negligible. Invoking the strategy of heroic approximation, we



312 EDWARDS AND BARRON

therefore examine the obvious approach to ignoring them: treat utility
functions as linear in x.

From this point of view, four cases often arise; three utility functions
and one more case in which utilities are assessed judgmentally without
specification of a physical variable. Figure 1 displays all four.

Consider the task of choosing which new car to buy. Assume that you
have carefully examined the options and your preferences, and that you
have reduced the set of possible purchases to a limited number worth
considering. The cars you are considering differ in engine power, record
of frequency of trips to the shop for this make of car in past years, amount
of crushable steel, and styling; you have determined that only these four
dimensions are value-relevant. They do not differ in price.

We chose these dimensions to illustrate the four cases shown in Fig. 1.
For you, more engine power is better than less throughout the range of

100 100
u u
Q 0
min x max min x max
Type a Type b
100 100
u u
0 [}
min x max
Typec Type d

F1G. 1. Four classes of single-dimensional utility functions. Type a are functions in which
more of x is better than less. Type b are functions in which less of x is better than more. Type
¢ are functions containing an interior maximum. Type d are direct judgmental utilities for
which no underlying single physical variable exists.
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engines available. So your utility function is of Type a. Fewer trips to the
shop are better than more (Type b). Crushable steel has an internal max-
imum in your value system (Type c); too little of it heightens your chances
of being injured if you have an accident, but too much leads to an over-
sized, sluggish, hard-to-control car. Finally, styling, though linked to
many physical variables, is best thought of for your purposes as a direct
Judgment of preference rather than as a function of some physical mea-
sure (Type d).

An imaginable fifth case would have an internal minimum rather than
an internal maximum; we have never encountered an example and so do
not discuss the possibility. We ignore logical possibilities such as multiple
maxima or minima and utility functions with gaps in them for the same
reason.

When the linear approximation is usable, the task of eliciting single-
dimensional utilities for utility functions of Types a and b reduces to
assessing two extreme values of x, its maximum and its minimum in the
context at hand. This is trivial for contexts in which the objects of eval-
uation can be exhaustively listed in advance. Even if they cannot be, it
makes little difference; any choice of two values will do, provided the
user recognizes that too small a range can lead to utilities above 100 or
below 0. In the case of Type ¢ functions, the extreme values of x must be
supplemented by the best value of x and by judgments that specify which
branch of the function reaches 0 utility and by how much the other branch
does not. For Type d functions, single-dimension utilities must be directly
assessed for each object of evaluation. The overwhelming preponderance
of instances will be of Types a, b, or d; type c is rare.

When are linear approximations inappropriate? A first thought would
be that they are inappropriate if the utility function is non-monotonic. But
functions of type c are exactly such a case, and the approach of using two
(or more) lines will work well whenever the location of the internal max-
imum is known or easy to elicit.

The greater the curvature of the function, the less satisfactory will be a
linear approximation. Consider a function whose slope changes smoothly
from highly positive to 0. This and its mirror image are the two worst
imaginable cases, given the constraints of strict monotonicity and re-
stricted range. They can be pretty bad; it is quite possible to produce a
discrepancy of 50 (on the arbitrary 0-100 single-dimension utility scale)
between the approximation and the ‘‘true’’ function.

Fortunately, human judgment can be used fairly easily to check the
adequacy of the approximation. For example, the following line of ques-
tioning could be used to check whether it is appropriate to use a linear
approximation for the utility of engine power. ‘“Think about small im-
provements in power at various points within its range. Specifically, think
about a fixed improvement of 10 horsepower. Would that improvement be
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more appealing to you if it fell near the bottom of the scale, or in the
middle, or near the top? Or doesn’t it matter?’” If it doesn’t matter, the
linear approximation is acceptable. Suppose the respondent prefers the 10
hp improvement near the bottom of the scale. ‘“Now, where does the 10
hp improvement help least?”” Suppose the respondent finds it least helpful
at the top of the scale. ‘‘In a ratio sense, how much more desirable is the
improvement at the bottom than the improvement at the top?”’ That ratio,
of course, is the ratio of the greatest to the least slope of the function, and
so is an index of the amount of curvature of the function. As a rule of
thumb, if the ratio is greater than 2:1, the linear approximation should not
be used. That rule of thumb is both crude and conservative; a more
sophisticated rule of thumb would take weights and option structure into
account—and so would violate the strategy of heroic approximation.
Since a continuous utility function with one or more inflection points is
better approximated by a straight line than an uninflected one, this test is
conservative for inflected functions.

When executing the elicitation sketched in the previous paragraph, the
elicitor should be attentive to the possibility that the respondent is inap-
propriately paying attention to end-points of the utility scale, which are
arbitrary. ‘*Anything is better than nothing’’ or **90% seems very good;
why sweat the last 10%?"° are comments that, if encountered or elicited,
would suggest this misconception. To remedy it, the elicitor should re-
mind the respondent that the end-points of the scale were accidental and
that different end-points could as appropriately have been used, and
would have been, if the options had been different.

If the linear approximation is not usable, the elicitor can fall back on the
well-known methods for single-dimension utility elicitation (see von Win-
terfeldt & Edwards, 1986, Chap. 7, for methods that do not depend on
indifference judgments among hypothetical bets).

The additive model (Links to Steps 7, 8, and 9). Supposing that we
know u (x) for each relevant value dimension, we must determine how to
aggregate the vector of u (x) values into a scalar in order to carry out
Raiffa’s program. By far the easiest to use and most familiar model for
such aggregations is the additive one. If A (h = 1,2, ..., H)is an index
identifying the objects of evaluation (cars, in our example) and &k (k = 1,
2, ..., K)is an index of the value dimensions, then this model says that

K
Un = Z Wittp(Xpk) - (D

k=1

In Eq. (1), the values of u,, (X)) are the single-dimensional utilities
discussed above. The W, are the weights, one for each value dimension;
by convention, they sum to 1.
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Additive models may be good approximations, though not precisely
correct. Or they may be lousy even as approximations. Fortunately, an
easy-to-use test will weed out almost all instances in which an additive
model would be really bad. It consists of looking for instances in which,
at one level of value attribute x, more of y is better than less, while at
another level of x, less of y is better than more. For example, an automatic
transmission may appeal to you more than a manual one for city driving
in traffic, but may be highly undesirable in a car designed for rough-road
or off-road use. If you are considering which car to buy, and your option
set includes both luxury sedans and vehicles designed for off-road use,
your evaluation of the presence of an automatic transmission in a specific
car may depend on which kind of car it is. Such violations of conditional
monotonicity, usually easy to detect judgmentally, mean that additive
models should not be used. If the inputs to a multiattribute utility problem
are all conditionally monotonic with one another, we have little hesitation
about using additive models. Doing so violates some formal rules unless
a demanding technical condition called Additive Difference Independence
(see von Winterfeldt and Edwards, 1986, Chapters 8 and 9) is satisfied;
given conditional monotonicity, we justify such violations as consistent
with the strategy of heroic approximation that motivates this paper. Our
personal experience has been that violations of conditional monotonicity,
though they do occur, are rare.?

The definition of conditional monotonicity for utility functions of type
¢ is only slightly more complicated than for the others. The peak in a type
¢ function should not change its location as a result of changes in the
values of other dimensions. Again, this property is easy to test judgmen-
tally.

What was wrong with SMART? (Links to Steps 7 and 8). The values of
the weights given in Eq. (1) are related to the values of the single-
dimension utilities. To see the point, note that halving each value of u,
(X,,) for some specific value dimension k£ can be compensated for by
doubling the weight for that k and then renormalizing the weight vector;
the new utilities are identical to the old ones. Weights reflect the range of
the attribute being weighted as well as its importance.

2 Keeney has said “‘If additive independence is violated, you probably do not have the
appropriate set of fundamental objectives. The reverse is just as important and as accurate.
If you do have an appropriate set of fundamental objectives for the context of a decision,
additive independence is probably a very reasonable assumption.”’ (Keeney, 1992, p. 167)
We agree. Our example of the interaction between whether or not a vehicle is designed for
off-road use and whether or not it has manual transmission illustrates Keeney’s point.
Evaluation of the vehicle for these quite different uses should probably be done separately
for each class of use, and then combined by means of some weighting function that reflects
probability and importance of performance in each such class.
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To obtain weights, Edwards (1977) exploited the great intuitiveness of
the notion of importance and the natural and correct idea that in an
additive model weights convey the importance of one dimension relative
to the others. The procedure was simple. Respondents were asked to
judge the ratio of importance of each attribute to all others; such judg-
ments can easily be turned into a set of normalized weights.

But the procedure ignores the fact that range as well as importance
must be reflected in any weight. (More specifically, weights must be
proportional to a measure of spread times a measure of importance.) For
example, in car buying, the price of the car is usually important. But
would it still be important if the prices of all cars being considered ranged
from $15,000 to $15,100?7 Obviously the degree of importance of an at-
tribute depends on its spread; that dependence was ignored in SMART
weight elicitation. This error is the reason why SMART is not intellectu-
ally acceptable. Specifying the range firmly and being careful not to
change it, as Edwards and Newman (1982) recommend, does not avoid
the intellectual error, though it may, if weight judgments are made ap-
propriately, help prevent it from leading to inappropriate choices.

Swing weights® (Links to Steps 7 and 8). Swing weighting does avoid
the intellectual error. The word *‘swing’’ refers to the operation of chang-
ing the score of some object of evaluation on some dimension from one
value to a different one (typically from 0 to 100). Suppose, in the car
evaluation example, that you have specified exactly four cars that you
want to evaluate and have obtained satisfactory single-dimension utilities.
The result is presented in Table 1. Casual inspection shows that a 0 and
a 100 appear in each column, and so that the full range of each value
dimension is used. This property, while not necessary, is pleasant to
have. Less casual inspection shows that no option is ordinally or cardi-
nally dominated. Consequently no additional analyses not involving
weights can simplify the choice problem, e.g., by making an attribute
irrelevant.

Swing weight elicitation proceeds in two Steps. Step 7 yields the rank
order of the weights; Step 8 yields the weights themselves.

For Step 7, ask your respondent the following kind of question. ‘‘Imag-
ine that there was yet another kind of car, call it the Nometer, and that
you were for some strange reason required to buy it. Unfortunately, the

3 An analyst at Decisions and Designs, Inc., in the 1970’s, aware of the ranges-are-weights
problem, invented swing weights, but we don’t know who it was. Edwards learned about
swing weights from Ann Martin (personal communication) and incorporated them in the von
Winterfeldt~Edwards book. Many users of SMARTS now cite that source for swing
weights. We know of no earlier publication to cite; but neither Martin nor von Winterfeldt
nor Edwards invented them.
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TABLE 1

Value dimensions

Cars Power Shop trips Crushable steel Styliné Agg. util.
Anpapest 100 9% 0 0 76.45
Dactyl 0 100 90 70 44.58
Iamb 70 40 100 40 64.37

Trochee 50 0 40 100 38.12

Note. The entries in the Table are utilities, not physical measures. For all value dimen-
sions, 100 is best and 0 is worst.

Nometer scores 0 on all four dimensions; it is the worst possible car.
However, the somewhat kindly deity who makes the rules will allow you
to improve just one of the dimensions from its worst value to its best.
Which dimension would you choose to improve?’’ Suppose the respon-
dent chooses to improve Power. ‘*“Next, imagine that you are stuck with
the worst possible car and allowed to improve any dimensjon except
Power from its worst value to its best. Which would it be?”” Continue until
all dimensions are rank ordered in terms of attractiveness of the 0~100
swing. This completes Step 7. In our example, we shall suppose the
ranking was Power, Shop Trips, Crushability, Styling.

Step 8 builds on the ranking obtained at Step 7. It has several presum-
ably equivalent variants.

To elicit swing weights via direct magnitude estimates, one might ask
“‘Let’s call the weight of Power the most important dimension, 100. That
is, a swing from 0 to 100 is worth a full 100 points to you. Let’s call the
weight of some dimension you really don’t care about, say size of the
ashtray, 0. A 100-point swing on that dimension doesn’t matter. Now, on
that scale, what is the weight of a 100-point swing on the second most
important dimension, Trips to the Shop?”” A similar question can be
asked for each dimension. The four resulting judgments, normalized, are
the weights.

An alternative approach uses indifference judgments. “‘Consider car
Nometer, with Styling improved from 0 to 100. Now, you would presum-
ably be indifferent between that one, which we might call Stylish Nom-
eter, and another version of Nometer in which Crushable Steel is some-
what improved with all other dimensions at their worst. But Crushable
Nometer presumably need not have Crushability improved to 100 to be
exactly as attractive as Stylish Nometer, since you assessed Crushability
as more important than Style. For what Crushability utility would you be
indifferent between Crushable Nometer and Stylish Nometer?”’

This judgment is a direct assessment of the ratio of the weights of
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Crushability and Stylishness. Since the other dimensions are set at 0
U“llty, Eq (l) says that Usrvlish Nometer — YCrushable Nometer = 100 Wy = SW3’
where § is the amount of the swing in Crushability required to equal in
attractiveness a 100-point swing in Stylishness. Consequently, wy/w, =
100/S.

One could elicit other weight ratios similarly by assessing the amount of
swing in each dimension that is as attractive as a 100-point swing in
Stylishness. The three weight ratios thus elicited might be called R(1/4),
R(2/4), and R(3/4). (Note that we put the weight of the more important
dimension over the weight of the less important one; these numbers are
therefore all greater than 1.) Since we know (by convention) that the sum
of the four weights is 1, we solve for them as follows: R(1/4) + R(2/4) +
R(3/4) = (I — wy)/w,. Therefore wy, = 1/[1 + R(1/4) + R(2/4) + R(3/4)].
Given w,, the three ratios give the other three weights.

Using the weight of the least important dimension as the standard may
be insecure, since that weight is the smallest of those considered. All
possible weight ratios can be recovered by the general procedure de-
scribed. Any sufficient set can in principle be deciphered into actual
weights. For example, suppose R(1/2), R(2/3), and R(3/4) are directly
elicited, thus asking the respondent to compare each weight only with its
next neighbors in size. Obviously R(1/2) X R(2/3) X R(3/4) = R(1/4) and
R(2/3) X R(3/4) = R(2/4). Solution of the system can now proceed as in
the previous paragraph. More generally, the redundancy of the informa-
tion contained in a set of assessed weight ratios permits on-line evaluation
and correction of elicitations.

Most of our respondents prefer and have more trust in the result of
procedures based on magnitude estimates than those based on indiffer-
ence judgments; that is why we presented magnitude estimates first. A
guess about the reason is that the judgmental task, though in a sense more
demanding (assessment of a number with an abstract meaning rather than
assessment of a number that makes two options indifferent), is easier both
to explain and to do. The result of both judgmental procedures should be
the same,

Rank weights (Links to Step 8 for SMARTER). Most of the useful
numerical information obtained in swing weighting is obtained in Step 7,
not Step 8. And Step 7 calls for far easier judgments from the respondent
and so is much quicker than Step 8, especially if the elicitor does not wish
to use magnitude estimation. Stillwell, Seaver, and Edwards (1981),
aware of the literature on equal weights (e.g., Dawes & Corrigan, 1974;
Einhorn & Hogarth, 1975; Wainer, 1976) proposed rank weights, which
represent preferences better than do equal weights and do not require
Step 8. They offered three ways of translating ranks into weights; none
had any rationale beyond preserving rankings. Stillwell, Seaver, and Ed-
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wards considered all three equally ad hoc, but Doyle, Green, and Cook
(under review) argue that rank sum weights more closely resemble
weights directly elicited from decision makers than do the weights pro-
duced by other rank weighting procedures, including ROC weights.

Barron and Barrett’s (under review) development of a formally justifi-
able solution to the task of turning rankings of weights into weights, and
even more their demonstration of the quality of the result, is the reason
for defining SMARTER and writing this paper. They call their weights
Rank Order Centroid, or ROC, weights. The notation of this paper is
identical with theirs except that they call the number of attributes n, while
we call it K.

The key ideas of the Barron-Barrett derivation are quite simple. If
nothing were known about the weights except their sum, set at 1 by
convention, then the set of possible non-negative weight vectors would be
any that have that sum. If you had no prior reason to prefer one weight
vector to another, it would be natural (and error-minimizing) to use equal
weights. The point describing equal weights in the hypersurface (simplex)
of all possible weights is its centroid.

All that knowing the rank order of weights does to the argument of the
preceding paragraph is to change the geometric description of the set of
acceptable weights—the simplex. It is straightforward to specify the cor-
ner points of the smaller simplex consistent with knowing the ranks, and
from them to specify its centroid. Moreover, the equations for the weights
have a convenient computational form. If w, = w, = . . . = w,, then

wi=(1+12 +13+ ...+ /KK
w,=0+12 +13+ ...+ 1/K)K
wi=0+0 +13+...+ UKJK
wg=0+...+0 + 1/K)K

More generally, if K is the number of attributes, then the weight of the
kth attribute is:

K
wi = (1/K) 2, (1/i). Q)

i=k

Table 2 contains weights calculated from Eq. (2) for values of K from 2 to
16. Partial rank order information (e.g. tied ranks, missing ranks) can be
handled, though the computational formulas are less pretty. Barron and
Barrett treat such cases, drawing their methods from Kmietowicz and
Pearman (1984).

Barron and Barrett checked the error-producing capabilities of ROC
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TABLE 2
ROC WEIGHTS FOR INDICATED NUMBER OF ATTRIBUTES

Number of attributes

Rank 9 8 7 6 5 4 3 2

1 3143 .3397 3704 .4083 4567 .5208 6111 .7500

2 .2032 .2147 .2276 .2417 .2567 .2708 2778 .2500

3 .1477 1522 .1561 1583 1567 .1458 i

4 1106 1106 .1085 1028 .0900 0625

5 .0828 .0793 0728 0611 .0400

6 .0606 .0543 .0442 0278

7 .0421 .0335 .0204

8 .0262 .0156

9 0123

16 15 14 13 12 1 10

1 2113 2212 2323 .2446 .2586 .2745 2929
2 .1488 .1545 .1608 1677 1753 .1836 1929
3 1175 1212 1251 1292 .1336 .1382 .1429
4 .0967 0990 1013 .1036 .1058 1079 1096
5 .0811 .0823 0834 .0844 .0850 .0851 .0846
6 .0686 .0690 .0692 0690 .0683 .0670 .0646
7 0582 0579 0573 10562 0544 0518 0479
8 .0492 .0484 .0471 .0452 .0425 .0388 .0336
9 0414 .0400 .0381 .0356 .0321 0275 .0211
10 .0345 .0326 .0302 .0270 .0299 0174 0100
11 0282 0260 .0230 0193 0145 .0083
12 .0226 .0199 0165 0123 .0069
13 0173 .0143 .0106 .0059
14 0125 .0092 .0051
IS .0081 .0044

16 .0039

weights in extensive simulations; Barron has extended these results fur-
ther. ROC weights lead to the identification of the best option (defined by
assuming SMARTS weights to be true) 75 to 87% of the time, depending
on simulation details. But the important calculation is utility loss. (Utility
loss is the ratio of the amount of utility lost by the error to a much bigger
swing in utility, utility of the optimal strategy minus utility of a random
strategy; see von Winterfeldt & Edwards, 1986, Chap. 11, for details and
for an argument that such utility losses should be used to evaluate the
costliness of errors.) For all conditions (number of alternatives = 5, 10,
15, 20, 25; number of attributes = 3, 6, 9, 12, 15) studied, Barron and
Barrett found average utility losses of less than 2%. In short, when ROC
weights don’t pick the best option, the one they do pick isn’t too bad.
That is why we are recommending this procedure for routine use.
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What is meant by ‘‘isn’t too bad?’’* Consider the particular condition in
the Barron—-Barrett simulations having the largest average value loss.
That largest average value loss for ROC weights is 1.9% (1.9 utility units
or utiles, using the 0~100 range for utilities that is conventional in this
paper). Actual loss was zero for 86.3% of the trials, because SMARTS
and SMARTER picked the same option. We know of no way to recognize
such cases, or their opposite, without completing SMARTS, in which
case SMARTER makes no sense. The average value loss for trials on
which a value loss does occur is 13.9, or just under 14% of the 0-100
range. The underlying distribution is severely skewed; most losses are
smaller, but a few are quite large. Next, consider the condition, of those
studied by Barron and Barrett, in which SMARTS and SMARTER most
frequently disagreed. That most frequent loss condition (loss > 0) oc-
curred on 24.9% of the trials, with an average value loss of 1.4 utiles. This
implies an average conditional value loss of 5.6 utiles. A sensitivity anal-
ysis applicable to value matrices like Table 1, including identification of
maximum loss, is shown in the Appendix.

Srivastava, Beach, and Connolly (in press) conducted an experiment
intended to compare SMARTS and SMARTER with other ways of elic-
iting multiattributed values. The stimuli were hypothetical apartments
that varied on nine dimensions. Students judged weights by various meth-
ods, and in addition rated each apartment on a 9-point scale of desirabil-
ity. Weights were also recovered statistically from the holistic judgments.
The five weighting procedures yielded weights that intercorrelated highly;
the highest correlations were among Swing weights, ROC weights, and
rank weights by an older procedure. Test-retest reliability of the holistic
judgments of attractiveness were fairly low—.64 to .69. Of the weighting
procedures, ROC weights produced multiattribute utilities that correlated
most highly with holistic judgments, .75.

A Caveat

We close by underlining a point familiar to decision analysts. The most
important goal of decision analysis is insight, not numerical treatment.
Elicitation and use of such numbers as multiattribute utilities contributes
to emergence of insights in important ways. Those insights sometimes
emerge from the kind of thinking required to do Part 2 of swing weights.
Some analysts with whom we have discussed SMARTER have expressed
reservations about the procedure because, by reducing judgmental labor,
it reduces the opportunity to have insights. We do not have enough ex-
perience with SMARTER to know whether or not this is a serious defi-
ciency that should affect its use. Our guess is that it depends on decision
context. But we fully agree that nothing that can be done with multiat-
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tribute utilities after they have been elicited is nearly as valuable as the
insights that sometimes emerge during the elicitation.

APPENDIX
Analysis of Specific Values and Ranks

In the example presented in Table 1, the ROC weights implied by Step
1 of Swing weighting are .5208 (power) > .2708 (trips to shop) > .1458
(crushable steel) > .0625 (style). The simplex that defines the set of all
possible rank weights for four attributes has the following extreme or
corner points:

(1,0,0,0)
(1/2,1/2,0,0)
(1/3,1/3,1/3,0)
(1/4,1/4,1/4,1/4).

From a theorem of linear programming it can be shown that the largest
possible error produced by using ROC weights to select a car is the
maximum difference in multiattribute value between the alternative cho-
sen by ROC weights and the alternative chosen by the weights that define
the extreme point, both evaluated using the weights that define the ex-
treme point. Table 3 shows the multiattribute values at each extreme
point and at the ROC weights point for the example of Table 1.

Using ROC weights, the Anapest is best. Using equal weights, the
Dactyl is best and the Anapest is worst.

How much change in the ROC weights is needed to make the Anapest
and the Dactyl equally attractive? We can answer the question by drawing
a straight line connecting the ROC weights point with the equal weights

TABLE 3
MULTIATTRIBUTE VALUES® FOR ROC AND FOUR EXTREME POINTS
Weights

Alternative ROC (1,0,0,0) (¥2,%2,0,0) (¥3,%,%5,0) (Va,Y4,Y4,va)
Anapest® 76.45 100 95 63.33 47.5
Dacty! 44,58 0 50 63.33 65
Iamb 64.38 70 55 70 62.5
Trochee 38.12 S0 25 47.5 47.5
Best 76.45 100 95 70 65
ROC? 76.45 100 95 63.33 47.5

Error 0 0 0 6.67 17.5

¢ Single-attribute values are on the 0-100 scale conventional in this paper.
® With ROC weights, Anapest is the best vehicle.
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point in the simplex of possible weights, and then finding the point on that
line at which the two cars are equally attractive.

The ray connecting the ROC weights point with equal weights point is
defined by Eq. (3). Any value of o between 0 and 1 specifies a point on
that ray; the weights that define that point are specified by Eq. (3). For
example, for a = .4, the weight of Power is .4 (.5208) + .6 (.25) = .3583.

.5208 .25

. .2708 .25
Weights(e) = o 1458 +( - a) 25 | Osas 3)

.0625 25

To find the value of « for which the Anapest and the Dactyl are equally
attractive, we need only note that the multiattribute utility of each for any
intermediate value of a is the convex combination of their multiattribute
utilities at the beginning and end of the ray. We therefore solve the fol-
lowing expression (numbers are multiattribute utilities for Anapest and
Dactyl, from Table 3) for a:

J645a + 475(1 — a) = 4458 a + .65(1 — w).

In this example, a = 0.3545. From Eq. (3), the weight vector at that value
of a is (.3460, .2574, .2131, .1835).

Because Anapest is best at (1, 0, 0, 0) and at (1/2, 1/2, 0, 0), we can
repeat the analysis of the previous paragraph twice, substituting each of
these weight vectors for the ROC weights. Doing so yields two more
weight vectors at which Anapest and Dactyl are equally attractive; they
are (3616, .2128, .2128, .2128) and (.32, .32, .18, .i8). By identifying
points on the boundaries of the region(s) of the simplex in which Anapest
is the winner, these weights give some idea of its size and of the closeness
of those boundaries to the point specified by ROC weights. In this exam-
ple, the weight of the most heavily weighted dimension, power, would
have to be very considerably lower than the ROC weights value of .5208
to make the conclusion that Anapest is the best car seem insecure.

Since Iamb is best at (1/3, 1/3, 1/3, 0), we can make a similar calculation
comparing it with Anapest. The weight vector on the ray connecting ROC
weights with (1/3, 1/3, 1/3, 0) that makes Iamb and Anapest equally at-
tractive is (.4000, .3111, .2666, .0223)—again, comfortably distant from
the ROC weights vector.

The extreme points that define exactly the weights for which which the
alternative that is optimal using ROC weights is also optimal can be de-
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termined by using a program (Fukuda & Mizokoshi, 1992) included within
the Mathematica Software Package. The appropriate polytope is

wiZwyZwy=w =0

wit wy+ wy+wy =1
MAV(A) = MAV(D)
MAV(A) = MAV()
MAV(A) = MAV(D),

where MAV (A) = 100 (w;) + 90 (w,) + 0 (w3) + 0 (w,) (numbers are
from Table 1) and A, D, I, and T are Anapest, Dactyl, lamb, and Trochee,
respectively. Warning: the software may take several hours to execute!

Any convex combination of these extreme points specifies a set of rank
weights for which (in this example) Anapest is best.
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