Reconciling the Returns to Education in Off-Farm Wage Employment in Rural China

Alan de Brauw and Scott Rozelle*

[^0]
Reconciling the Returns to Education in Off-Farm Wage Employment in Rural China

Abstract

Previous studies have found that the returns to education in rural China are far lower than estimates for market economies. In this paper, we try to determine why previous estimates are so low. Whereas estimates for the early 1990s average 2.3 percent, we find an average return of 6.4 percent. Furthermore, we find even higher returns among younger people, migrants, and for post-primary education. We further show that although part of the difference between our estimate and previous estimates can be attributed to increasing returns over time, a larger portion of the difference is due to the methodology used by other authors.

Reconciling the Returns to Education in Off-Farm Wage Employment in Rural China

Rural education is of primary importance to development in China. Since family planning policies were implemented, birth rates have been much higher in rural areas than in urban areas. As approximately 60 percent of China's population permanently resides in rural areas, an even larger percentage of children are educated in rural areas (NBS, 2005). Therefore, the effectiveness of rural education is of particular interest to policy makers and researchers interested China's continuing development.

Despite the importance of building human capital in rural China, education has not had a prominent role in government development efforts during the past two decades, and faces serious fiscal problems (West, 1997; Nyberg and Rozelle, 1999). Unlike its successful neighbors in East Asia, China's central government has traditionally spent relatively little on rural education. For example, Heckman (2003) reports that China as a whole spent 2.5% of GDP on education, while the world average is 5.2%, and other developing countries in Asia typically spend between 4 and 5\%. Rural education attainment rates are also relatively low for its development level. In China, the average educational attainment is only 6.1 years, compared with more than eight years in the rest of Asia (Psacharopoulos, 1994).

Education may be underfunded in China in part because investments in rural education are perceived to generate relatively low private, and therefore social, rates of return. While measured average returns to education in the developing world are over 10 percent and exceed 9 percent in other Asian countries (Psacharopoulos, 1994), studies in rural China typically find returns below 5 percent. In the urban economy, studies using data collected in the late 1980s and early 1990s rarely found returns to exceed 5 percent (e.g., Appleton et al., 2002; Meng and Zhang, 2001; MaurerFazio, 1999). ${ }^{1}$ Studies of the rural economy have typically found even lower returns (e.g., Meng, 1996; Parish, Zhe, and Li, 1995; Zhao, 1999). If previous studies are correct and investment in
schooling in China does not lead to higher incomes, it can be argued that the central government should reduce its emphasis on schooling in its development plan in favor of other expenditures that will lead to higher returns.

As returns to education are relatively high in other countries, consistently low estimates of returns in rural China demand further explanation. Given its socialist legacy, it is possible that China's reformers may have insulated managers from the pressures of markets. Managers may have been encouraged to use non-market factors to assign jobs to workers rather than hiring more educated workers or workers with better qualifications. While this explanation is plausible for the early years of transition in urban China, it is unlikely to be the major reason for low returns in the rural economy, as it became market-oriented much earlier in the market transition than the urban economy. Rural enterprises have operated in an increasingly competitive environment, and managers in most fields have had fairly good incentives and rights (e.g. Naughton, 1995; Chen and Rozelle, 1999; Jin and Qian, 1998).

Alternatively, the returns to education in rural China may have been systematically underestimated due to methodological shortcomings. Previous studies may have mismeasured wages by using a wage measure that endogenizes the individual's decision regarding the amount of labor to allocate to off-farm work. As a result, wages could have been systematically understated for the educated relative to the less educated. Using data that allow for a more appropriate measure of the wage- the hourly wage instead of a daily or monthly wage- could help provide better estimates. Furthermore, previous studies may have focused on only one sector of the rural off-farm economy. If that sector- for example, rural industry- was dominated by firms with managers that did not reward workers for their education, the low measured rates of return may be due to the fact that the firms were simply not representative of the rural economy as a whole. Finally, returns could be lower for low levels of education (primary school) relative to higher levels of education (lower and upper secondary school). Treating each year of education as the same could lead to systematic underestimates of the returns to education in studies of an economy, like China's, that has only
been successful in reaching an average level of attainment of primary school (Strauss and Thomas, 1995). Regardless of the source, if low estimates of the rate of return to schooling are primarily due to methodological shortcomings, previous research may have contributed to the problem of low investment in education rather than helping solve it.

The goal of this paper is to help explain the gap between estimated returns to education in off-farm employment in rural China and the rest of the world. We produce new estimates of the returns to education in rural China and reconcile our results with those in the literature. While it is possible earlier studies find low returns due to institutional constraints, we show that methodology played a major role in the low measured rates of return that characterize the human capital literature on rural China. We demonstrate that three factors have helped lead to these low measurementsmismeasured wage rates, unrepresentative samples, and a failure to account for the non-linearity of returns to education. We find that the methodological differences between our study and others can account for a significant part of the differences between rates of return for rural China and those found in the rest of the world. In fact, several subsets of our estimates are almost completely consistent with those discussed by Psacharopoulos (1994) for East Asia in general.

To accomplish this goal, the paper will proceed as follows. The next two sections describe our data set and examine previous work on wages and rates of return in rural China. In the following sections, we describe the empirical framework that we will use to produce a new set of estimates of rural rates of return and present our baseline estimates. After examining how the estimates change when alternative specifications, samples, and estimations techniques are used, we show how several key assumptions can explain the previous results in the rural China education literature and how relaxing those assumptions make China's results come in line with those in the rest of the world. The final section concludes.

1 Data

The data set used in this paper is from a nearly nationally representative survey of 1199 households in 6 provinces and 60 villages in rural China conducted by the authors in late 2000. ${ }^{2}$ In addition to collecting basic information on the farm household, land and labor endowments, and other production-oriented activities, the survey included detailed information about labor force participation and schooling among all household members. Enumerators questioned all household members about their education, and asked all household members about their employment and work except for children under fifteen, individuals in school, and the elderly who no longer work. In total, our sample includes 3364 individuals who were 16 years of age or older who could potentially work. Of those, 1022 individuals worked for a wage off the farm either locally or as a migrant, and 2341 did not.

To assess the representativeness of our sample, we compare employment rates in different broad categories in our sample with the national statistics for 2000 (NBS, 2001). Some differences should be expected, as we were able to pick up migrants in our sample and categorize them as off-farm workers. We also allow workers to enter multiple categories in our sample, as we observe individuals both working on the farm and in wage earning jobs. Keeping these differences in definition in mind, we find that our sample is largely consistent with the national statistics (Table 1). In the national statistics, 67% of rural workers were reported as primarily employed in agriculture. We find that 76% of workers spent some time working in agriculture in our sample. However, some of those people worked both on- and off-farm, which would lead us to find higher participation, and we include migrants, which would lead us to find lower participation. If we remove migrants from our sample, we find that 36% of the remaining workers either spent some time working for a wage or in self-employment. While this figure suggests lower primary sector employment than the national statistics, some of the workers in our sample spent only a small fraction of their time off-farm, implying that our figures are roughly consistent with the national ones.

Several aspects of both the household and village level surveys were designed specifically to try to help answer the questions raised in this paper. The survey asked about school participation using both the years a person was in school and the final level of school attainment, and specifically asked if people repeated grade levels. Hourly wages were computed by taking all monetary earnings over the course of the year (in multiple jobs, if the person held more than one wage earning job) and dividing by the total number of hours that were reported as being worked during the year. It also asked respondents to identify if they lived at home while they were working, or if they lived away from home, so they could be categorized as local wage earners or migrants. Migrants include individuals who are still considered household members, but they lived outside the household for at least one month during the year while working. Migrants should still be considered part of the rural labor force, because they take jobs that urban laborers will not (Rozelle et al., 1999). Moreover, many migrants in our sample work in rural areas; only half of them leave their home county. To proxy for individual ability, which is known to bias estimates of the returns to schooling, we follow Ashenfelter and Zimmerman (1997) and use questions enumerators asked about the years of schooling each person's parents attained.

2 Returns, Educational Attainment, and Methodological Shortcomings

Meta-analyses of studies of the returns to education show a striking regularity in the relationship between wages and schooling levels in developing countries (Figure 1). ${ }^{3}$ In Sub-Saharan Africa and Latin America, where average educational attainment is between 5 and 8 years, an individual who attends an additional year of schooling gains a return of more than 12 percent annually in the form of increased wages. In Asia and the Middle East, where average educational attainment is higher, rates of return, although somewhat lower, still typically range between 8 and 10 percent
(Psacharopoulos, 1994). Average returns in the OECD countries, where most of the population graduates from high school, still reach nearly 7 percent.

In rural China, the average level of educational attainment, although rising in recent years, is significantly lower than the level in the rest of Asia (Figure 1). Among the entire workforce, the average years of schooling is 6.13 years. Among workers 35 years old and younger, the average education level is much closer to the level in the rest of Asia, at 7.59 years. Education levels have increased among young people as a result of educational reforms that have, among other changes, mandated that children go to school for nine years. However, there is no guarantee, especially in poor areas, that students go to school for the mandated nine years (Tsang, 1996; Brown and Park, 2002).

Rural China's pattern of educational attainment and returns does not fit the pattern found in the rest of the world. In rural China, estimates of the return to schooling made by other researchers are consistently quite low (Table 1). In our search of the literature, we identified six studies of rates of return in rural China that have used standard Mincerian methods. ${ }^{4}$ The average return across these studies is about 4 percent. Only one of the studies, Ho et al. (2001), measures returns in excess of 5 percent. Plotted on Figure 1, China stands out as having abnormally low rates of return to education when compared with the rest of the world, given its average educational level.

In addition to the experience of other developing countries, there are several reasons to believe that returns to education may be higher than current published estimates. First, in our data wages are positively correlated with education levels in rural China (Table 4). Among individuals who work for a wage off-farm, wages are significantly higher among people who have attended at least some post-primary school than among people who have not (row 1). Wages are also higher among migrants and younger workers who are more educated (rows 2 and 4). For example, migrants who have post-primary education have an average wage of 2.92 yuan per hour, whereas wages average 2.25 yuan per hour among migrants with a primary education or below.

The method of measuring wages in other rural China studies may further affect estimates of
the returns to education. In countries with underdeveloped financial markets, such as China, poorer people may drop out of school because they cannot finance the earnings they forego to attend school, while richer people can continue as they wish (Schultz, 1988). As a result, richer people may systematically have more education. Moreover, after completing education differences in wealth endowments, which are associated with differences in preferences for leisure and tolerances for risk, may influence the relatively poor to work more. The poor may have to work either more hours per day and/or more days per month or year. As a result, estimates of the returns to education based on daily, monthly or annual earnings could underestimate the true returns to schooling. Since hourly income is not affected by the choice of how many hours per day or days per month to work, it is the preferred measure (Schultz, 1988; Card, 1999). None of the previous Mincerian studies in rural China use hourly wages.

Methodological issues related to the use of unrepresentative samples may further obscure the measured relationship between wages and completed education. Several papers only consider workers in one industry or sector of the economy (e.g. Meng, 1996; Gregory and Meng, 1995; Ho et al., 2001). If that sector had lower rates of return than other sectors, perhaps for institutional reasons, estimates drawn from such studies would not be representative. Becker (1964) warns that estimates of educational returns will be low if particular groups of workers are singled out for estimation, because the effect of selection into that portion of the off-farm labor force is ignored. Only one paper in the rural China literature does a standard Heckman correction for sample selectivity bias (Zhang et al., 2002).

Finally, previous studies have not considered several other basic empirical issues. For example, the returns to education in rural China have not addressed criticisms of the Mincer method that are well known in the literature (e.g. Schultz, 1988; Strauss and Thomas, 1995; Card, 1999). For example, none of the Mincerian studies controlled for potential nonlinearities in returns. ${ }^{5}$ Several recent studies based on urban China have found highly non-linear returns to education (Heckman and Li, 2004; Giles et al., 2006). In rural China, if there are higher returns to post-primary ed-
ucation than primary education, and previous studies have missed better educated workers, their estimates would have been biased downward. Since other authors have found a positive correlation between education and migration (e.g. Zhao, 1999; Rozelle et al., 1999), if other studies missed or excluded migrants, their estimated returns might be biased downward. In addition, previous studies have not tried to control for biases that might be created by omitting variables that might be systematically correlated with schooling levels or returns to education, such as individual ability or school quality measures.

3 Modeling the Effect of Schooling on Income

While it may not be surprising that the current literature has not found rates of return fit the patterns outside of China or the patterns that appear in the data, ex ante we do not know what factors cause such low estimates. To address these shortcomings, we produce new estimates that use methods that will attempt to address such criticisms. Therefore, in this section, we first present the model that is most commonly used to estimate the returns to education (Mincer, 1974). The model is subject to several criticisms, which can be categorized as either problems that result from measurement issues or omitted variable biases. After summarizing the model, we will discuss econometric strategy to address the issues.

3.1 The Mincer Model

A simple model relating years of completed schooling to lifetime earnings was proposed by Mincer (1974). The model assumes, initially, that individuals will work over a lifespan of W years, which is fixed, are risk neutral, and their human capital stock will not change after they finish school. Furthermore, the income that an individual will obtain is fixed and related directly to the amount of schooling they obtain. In this model the private cost of schooling is the cost of delaying the
income stream another year, which implies the relationship:

$$
\begin{equation*}
\ln \left(Y_{s}\right)=\ln \left(Y_{0}\right)+r S \tag{1}
\end{equation*}
$$

where Y_{s} is the income after schooling, Y_{0} is the base income with no schooling, and S is the years of schooling completed. In our analysis, we use hourly wages as the income measure.

Studies of the returns to education modify equation (1) to account for post-schooling human capital accumulation, through experience, and sometimes other effects on wages or income (see Psacharopoulos, 1985; 1994, for surveys). If experience, E, and experience squared are used to control for post-school human capital accumulation, the return to schooling, r, for individual i can be determined by estimating:

$$
\begin{equation*}
\ln \left(Y_{s, i}\right)=\ln \left(Y_{0}\right)+r S_{i}+\beta_{1} E_{i}+\beta_{2} E_{i}^{2}+\varepsilon_{i} \tag{2}
\end{equation*}
$$

Equation (2) is typically referred to as the Mincer "earnings function" method of determining the returns to schooling, and literally hundreds of studies have estimated the above equation in various settings. In all specifications, we modify equation (2) by adding a variable that indicates whether or not an individual has received formal training for a profession or trade (including participation as a formal apprentice) to account for any wage premium paid for such training, a dummy variable for gender than controls for the possibility that men and women are paid on different scales, and provincial dummy variables to account for regional differences in base wage rates. Since marital status has also been found to affect wage rates in developed countries (e.g. Goldin, 1990), in most specifications we include a dummy variable for whether or not individuals in our sample are married.

3.2 Further Adjustments to the Mincer Model

If we simply estimate equation (2) using OLS, we run into several potential biases, and therefore we adjust our estimation framework to account for them. ${ }^{6}$ Following Heckman (1974), workers
will not enter the workforce if their shadow or reservation wage $\left(Y^{*}\right)$ is higher than the wage offered. In rural China, people do not only make a choice between off-farm labor and leisure; they can also work in farming, raising livestock, and in self-employment. Their individual reservation wage is therefore determined by other opportunities and/or tradeoffs between labor and leisure. If that reservation wage is higher than the wage offered for an individual's skill set, that person will not enter off-farm labor markets. From the perspective of the analyst, we only observe wages for individuals who are offered a wage $Y_{s, i}>Y^{*}$. If we do not correct for this selectivity bias, the estimated return to education in off-farm work may be biased downward.

To account for this potential bias, we first estimate a probit for all individuals in our sample, where the dependent variable is one if the individual works off-farm for a wage and zero otherwise. Then, using the results of from the probit estimation we compute an inverse Mills ratio that corrects for possible truncation of the dependent variable in estimation of equation (2). In order to identify the probit equation, we include the logarithm of the household's asset holdings in 1999, the number of males and females of working age in the household, and the land endowment granted to the household by the village. None of these variables should affect the hourly wage of a specific worker, except through their decision about whether or not to participate in off-farm wage labor. These instruments are should have an effect on an individual's reservation wages, by affecting the returns to labor on the farm, in self-employment, and in leisure, but none of them should affect the wage offered to an individual. ${ }^{7}$

Equation (2) also implicitly assumes that the returns to education are the same for each additional year, even when individuals change schools. The returns could be non-linear; that is, the returns to different levels of schooling are different. To account for variation in the returns to different levels of schooling, we modify our model to estimate the return to an additional year of primary school and a separate estimate for an additional year of post-primary school. We modify equation (2) to estimate different coefficients for the return of primary schooling, r_{P}, and the return
to post-primary schooling, r_{M} :

$$
\begin{equation*}
\ln \left(Y_{s, i}\right)=\ln \left(Y_{0}\right)+r_{P} P_{i}+r_{M} M_{i}+\beta_{1} E_{i}+\beta_{2} E_{i}^{2}+\varepsilon_{i v} \tag{3}
\end{equation*}
$$

where P_{i} represents the years of primary school completed by individual i, and M_{i} represents the years of post-primary school. If an individual left school before completing primary school, then M_{i} is equal to zero.

Additionally, the Mincer model has been criticized for potentially omitting variables correlated with both wage levels and schooling, therefore implying bias in the estimated return to schooling. Therefore we check the robustness of our results to the inclusion of variables that proxy for an individual's ability, as many authors have pointed out that if people with more ability to earn money tend to go to school longer, then the estimated return to schooling will be biased upwards (e.g. Boissiere, Knight, and Sabot, 1985). Following, among others, Heckman and Hotz (1986), we attempt to control for individual ability using the educational attainment of the individual's mother and father as proxies.

4 Results

To generate estimates of the rates of return to education, we estimated equation (2) while controlling for sample selectivity bias (Table 5). In general, the estimator performed well. The Wald test statistic for the hypothesis that all coefficients were zero was strongly rejected, and OLS versions of the equations had R^{2} statistics that range from 0.15 to 0.20 . Moreover, most coefficients are of the expected sign and statistically significant. For example, in almost all reported specifications we find the expected concave relationship between wages and years of experience. Furthermore, as described by other authors who have examined the determinants of participation in the off farm labor market (e.g. Zhao, 1997), we find that education has a strong effect on selection into the off-farm labor force. At the mean level of education in the sample, given another year of education
a person becomes 1.1 to 1.3 percent more likely to find an off-farm job (row 1, columns 1, 3, and 5).

In addition to helping people find off-farm jobs, education has a positive, statistically significant effect on hourly wages. Depending upon the specification, we find that the average return to a year of education was between 6.3 an 6.5 percent (row 1 , columns 2,4 , and 6). In model 1 (columns 1 and 2), we estimate the average return to education to be 6.3 percent. In model 2, we include marital status to control for potentially higher wages among married individuals (Goldin, 1990), and find that marital status seems to have a negative effect on participation, and no effect on wages. In model 3, we test for ability bias by including the educational attainment levels for each individual's parents. These variables affect neither off-farm participation nor the wage rate, and so we choose model 2 as our preferred specification. Therefore our preferred estimate for the average return to education is 6.4 percent (row 1, column 4).

All three of our estimates are higher than other nationally representative samples from rural areas listed in Table 2 (e.g. Parish et al., 1995; Johnson and Chow, 1997). One possible explanation for a higher estimate is that we used a different methodological framework than other studies, as we specified hourly wages as the dependent variable rather than daily (e.g., Yang, 1997; Meng, 1996; Gregory and Meng, 1995), monthly (Johnson and Chow, 1997), or annual wages (Ho et al., 2001). Alternatively, the higher estimate could be due to the fact that we used a more representative sample, containing observations from across China and including both local wage earners (i.e., workers that have a job in local manufacturing or service enterprises) and migrants, instead of a subsample of local wage earners (e.g. Meng, 1996; Ho et al., 2001). Finally, the rate of return to education could be increasing over time, and our estimate could be relatively high because we used recently collected data. Despite our use of a nearly nationally representative sample, recently collected data, and a more theoretically consistent wage measure, our base estimate is still lower than estimates normally found for other developing countries.

The rates of return to education, however, rise sharply when the analysis focuses on specific
age groups within the population. Among individuals aged 35 and under, the average rate of return to a year of education rises to 10.5 percent (Table 6; row 1, column 4). This estimate is consistent with the average return found in the rest of Asia. In contrast, the point estimate for individuals over 35 is 2.9 percent, and the estimate is statistically insignificant (row 1 , column 7). The difference between returns for younger and older workers may indicate that human capital is becoming increasingly important for younger workers in rural China, the group that makes up the largest and fastest increasing part of China's off-farm labor force.

For migrants, the rate of return also exceeds the national average. When examining the entire sample, we find that migrants earn a higher return to their education than local wage earners (Table 6; row 1, columns 2 and 3). For all local wage earners, the average return to a year of education is 4.3 percent (row 1 , column 1). ${ }^{8}$ Among all migrants, the rate of return is 7.8 percent (row 1 , column 3). Moreover, when we restrict the sample to individual migrants 35 years old and under, we find that the rate of return rises to 11.7 percent (row 1, column 6). Meanwhile, estimates of the returns to education in both local wage earning and migration are statistically insignificant for individuals over 35. If migrants, and particularly young migrants, are systematically excluded from samples, the estimated rate of return could be downward biased. ${ }^{9}$

The returns to education in rural China might also be underestimated if, for example, later years of schooling lead to larger wage increments than earlier years of schooling. To test whether this phenomenon occurs in rural China, equation (3) was estimated using the whole sample and for individuals aged 35 and under (Table 7). Though primary education has a positive, statistically significant effect on selection into off-farm work in general (row 1, column 1), the return to a year of primary schooling is only 3.9 percent, and only marginally statistically significant (row 1, column 2). Though the return to primary schooling off-farm is low, post-primary schooling has a large, significant effect on the wage received (row 2, columns 2 and 4). Individuals who find jobs receive a return to an additional year of post-primary schooling of 7.4 percent (row 2 ; columns 2). ${ }^{10}$ These findings are consistent with a story that more educated workers are scarce in rural China,
and therefore they are receiving a high return to their education level. Using a data set collected in urban China, Li (2003) finds a similar low return to primary schooling and suggests that the returns to primary school are low because nearly every child now completes primary school.

4.1 Reconciling with Other Studies on Rural China

In order to reconcile our estimates for the rate of return to education in rural China with the findings of other authors, we perform the following exercise. First, we attempt to determine how much of the difference between our estimates and previous estimates are due to the difference in the time the data was collected, henceforth the timing effect. To do so, we use our data set to mimic the analyses of previous Mincerian studies (Table 2). ${ }^{11}$ We follow each author's wage definition and econometric specification as closely as possible, and then re-estimate the Mincer model. Since none of the previous authors did so, in this step we do not correct for selectivity. Where appropriate, we also restrict our sample either geographically or to a certain portion of the off-farm labor force. The difference between original published estimates and the estimates using our data and the specifications used by previous authors is one way to determine whether the return to education has changed over time.

Second, we attempt to find out how much of the differences in rates of return are due to methodological considerations. We can identify two effects. First, we primarily set out to determine how much of the difference is due to the mismeasured wage, controlling for sample selectivity. After using our data to mimic the original analyses, we make corrections in the wage definition and control for selectivity for all five studies, and re-estimate each model. From this part of the exercise, we can determine how much of the difference in the results are from the definition of the dependent variable (and selectivity). As two studies focused solely on the TVE sector, yielding an incomplete sample of the rural labor force (Meng, 1996; Gregory and Meng, 1995), here we use their specification and estimate returns using the entire sample, including migrants.

Our experiments show that the timing effect accounts for a portion of the difference between our estimates and the lower estimates found in the literature (Table 8, columns 1 and 2). When we compare the original rates of return from the literature (that use data collected in years varying from the late 1980s to the mid-1990s) with the estimates that use our data (from 2000) but their specifications and wage measurements, rates of return rise in four of the five cases when we use our data (column 2). On average, the rates of return rise from 2.3 to 3.8 percent, an increase of 1.5 percent. ${ }^{12}$ While some of the gap that we observe between the rural China literature and the rest of the world is due to a timing effect, which could be linked to the increasing emergence of labor markets, the rise in returns is modest. Furthermore, China's rates are still far below those in the rest of the world.

The methodological part of the experiment accounts for an even greater part of the gap (Table 8). After replacing each study's wage definition with the hourly wage and controlling for selectivity, we find that the rates of return return rise for all studies (columns 2 and 3). In the first three studies, we only test the mismeasured wage effect, and find the largest increase using the specification of Johnson and Chow (1997). For their study, the rates rise from 3.0 to 6.5 percent (row 1). For Parish et al. (1995) and Yang (1997), the increases are more modest, but still increase by 0.7 and 1.8 percent, respectively (rows 2 and 3). Since the final two studies only examined local wage earners, we control for both the mismeasured wage and for an unrepresentative sample (Meng, 1996; Gregory and Meng, 1995). While the mismeasured wage effect is found to be positive, the return only increases by 1.2 percent (4 percent versus 2.8 percent- not shown). However, when we include migrants when estimating the returns using their specification, the returns rise even further to 6.1 percent (column 3, rows 4 and 5). In total, the methodological adjustments raise the rates of return, on average, from 2.7 to 6.1 percent (row 6), accounting for a larger increase than the timing effect.

Although the timing effect and the two effects associated with methodology help close the gap between the China literature and the rest of the world, part of the gap still remains. Some of the
gap may be due to the nonlinearity of returns. If returns to post-primary education are inherently higher in rural China, and educational attainment levels are low, part of the gap may be caused by the fact that a smaller portion of its population is receiving the type of education that creates higher returns. Besides finding this effect in the previous section (Table 7), we also find it using the specifications of other authors. After making the corrections for wage definitions and sample selectivity bias, we find the returns to post-primary school are systematically higher than primary school in all of the studies, and range between 6.7 and 9.0 percent. The returns to a year of postprimary school are between 2.3 and 4.9 percent higher than the returns to primary school. As a result, by not considering the possibility of a convex relationship between wages and education, all previous studies may have further underestimated the returns to post-primary schooling.

Beyond methodological differences, part of the difference between returns in China and the rest of the world may also have to do with labor force demographics. Because of birth rates that declined earlier than in other parts of the developing world, China's rural labor force is relatively older than that of other developing countries (e.g. Tu, 2000). To provide a better comparison of China's labor force to that of the rest of the world, we concentrate on the rate of return to education among the young. ${ }^{13}$ If we revisit the illustration using the data from Psacharopoulos (1994), we see that the timing of our study, methodology, and the evolution of the labor force account for almost all of the gap in rates of return and attainment. Correcting for timing and methodology, we boost rates of return from around 4 to a rate of return of 6.4 percent at an average level of schooling attainment of around 6 years (Figure 2). When we restrict the sample to individuals under 35 years old, the rate of return increases to 10.5 percent, at an average schooling level of 7.5 years. When we plot this point on Figure 2, it is precisely in line with the rates of return and attainment rates found in the rest of the world.

5 Conclusions

In this paper, we have used a nearly nationally representative sample of workers in rural China to estimate the returns to education in off-farm work. Making corrections for selectivity into off-farm work and using the hourly wage rate, we find that across all individuals with off-farm jobs in our sample, the mean return to a year of education is 6.4 percent. The estimated return is even higher among all migrants in the sample, at 7.8 percent. These estimates are higher than most previously reported estimates of the return to education in China in the economics literature.

When the sample is restricted to individuals who are aged 35 and under, we find that the returns to education are 10.5 percent, which equals the average return found in Asia (Psacharopoulos, 1994). Among migrants, the return to a year of education is even higher, around 11.7 percent. Furthermore, the returns to education exhibit some convexity, which is consistent with findings of other authors who have looked for nonlinearities in the returns to education in other developing countries (e.g. van der Gaag and Vijvenberg, 1989; Strauss and Thomas, 1995; Duflo, 2001) and in urban China (Li, 2001). The estimates are also robust to controls for individual ability and for school quality, which may have biased the returns downward.

Our study shows the importance of using reasonably sound methodology on data sets that are representative of the entire wage earning labor force. When we replicate the methods followed by other authors to estimate returns to education using these data, we find that their methodology is associated with lower estimates of the returns to education. The results of this exercise emphasize the need to use hourly wages, rather than daily or monthly wages, to control for the amount a person chooses to work, as highly educated people in developing countries tend to choose to work less. They also show the importance of choosing a representative sample when studying the returns to education; we find that returns to education tend to be lower when only local labor is studied, as the returns to education in China are higher for migrants.

Finally, our estimates show that increasing educational availability in rural areas may be
a good policy instrument for increasing rural incomes, particularly with respect to post-primary school. This paper finds that the returns to education among younger workers are at approximately the same level as returns to schooling in the rest of Asia, and in developing countries in general. Given these high private returns, China's government would do well do make rural education a top priority. As the majority of children in China today are being raised in rural areas, much of China's future labor force would be made better off by supporting their education.

Notes

${ }^{1}$ More recently, several authors have estimated much higher rates of return to education in urban areas (Zhang and Zhao, 2005; Heckman and Li, 2003).
${ }^{2}$ The provinces included in the survey were Hebei, Shaanxi, Liaoning, Zhejiang, Sichuan, and Hubei. Since 10 villages were sampled in each province, the sample is almost evenly split between the six provinces. Descriptive statistics for all variables included in the regressions in the paper are in Appendix Table 1.
${ }^{3}$ Meta-analyses of studies of the returns to education average estimates over samples with differing levels of representativeness as well as over different periods of time. Some of the studies included in the averages presented here may share the methodological shortcomings of the literature on the returns to education in rural China. To the extent that these averages share these shortcomings, we would argue that they represent estimates that are biased slightly downward. Because they are averaged across many different studies, they should be considered crude estimates, although representative of the pattern.
${ }^{4}$ We define the "standard Mincerian method" as regressing the years of education, years of experience, and years of experience quared on the logarithm of a wage variable while using a sample of individuals. Seven studies not included in Table 2 calculate the returns to education using other methods. Zhang et al. (2002) uses a modified Mincer model to estimate the returns to education in Jiangsu over time; Zhao (1997) and Hare (1999) use other methods to estimate the returns to education for migrants. Zhang et al. (2002) find high returns at the mean education level of their sample in 1996 (9\%), but find no returns in 1988 and 1992. Zhao and Hare find returns of 2.6% on average. The other four studies- Benjamin et al. (2000), Li and Zhang (1998), Yang and An (2002), and Zhao (1999)- all use household level data and find returns of four percent on average, though Benjamin et al. (2000) is 6.6 percent.
${ }^{5}$ Only two previous studies attempt to explicitly control for a potential nonlinear relationship between wages and completed schooling by including an "education squared" variable (Zhang et al., 2002; Yang and An, 2002).
${ }^{6}$ Although we deal with several of the criticisms of the Mincer model in this paper, it has further criticisms that we will not discuss here. For example, it does not take into account regional labor supply and demand relationships that may affect the return to education in one place but not another (Heckman et al., 1996).
${ }^{7}$ All of the results in the paper are robust to the exclusion of specific instruments from the selection equation as well as their inclusion in the wage determination equation.
${ }^{8}$ We use an identical identification strategy when we limit the sample to local wage earners or migrants; for example, if we are determining the effect of education on wages paid to migrants, the local wage they would be offered is captured by the reservation wage. Since different instruments appear to have different effects on different types of work, we believe the instruments identify the varying reservation wages (Appendix Table 2). In the full sample and in the subsamples, Hausman tests reject the hypothesis that the coefficients on the instruments in the local wage earning and migrants equations are the same.
${ }^{9}$ This finding is consistent with Taylor and Yúñez-Naude (2000), who find that migration has the highest rate of return among household activities in Mexico.
${ }^{10}$ Among younger workers, the returns are also convex. Although the point estimate of the return to primary schooling is somewhat larger, at 6.0 percent, it is only statistically significant at the 10 percent level. However, conditional on holding a job, they receive a return of 11.5 percent to each year of post-primary schooling.
${ }^{11}$ We did not replicate the Ho et al. (2001) study, as it covered specific TVEs in Shandong and Jiangsu provinces, which are not included in our sample.
${ }^{12}$ To make this calculation, we take the average of men (1.8\%) and women (4.3%) from the Parish et al. (1995) study (row 2).
${ }^{13}$ Furthermore, the education of those between 35 and 50 years old in China may have been severely affected by the Cultural Revolution. Therefore, it is probably inappropriate to consider a year of education during the Cultural Revolution and after the Cultural Revolution as the same.

References

Alderman, H., Jere R. Behrman, D.R. Ross, and R. Sabot, 1996, The Returns to Endogenous Human Capital in Pakistan's Rural Wage Labour Market, Oxford Bulletin of Economics and Statistics 58(1), 29-55.

Appleton, Simon, John Knight, Lina Song, and Qingjie Xia, 2002, Towards a Competitive Labour Market? Urban Workers, Rural Migrants, Redundancies and Hardships in China, Institute for Contemporary China Studies Working Paper. Nottingham: University of Nottingham.

Becker, Gary, 1964, Human Capital (Columbia University Press, New York).

Behrman, Jere, and Nancy Birdsall, 1983, The Quality of Schooling: Quantity Alone is Misleading, American Economic Review 73(5), 928-946.

Benjamin, Dwayne, Loren Brandt, Paul Glewwe, and Guo Li, 2000, Markets, Human Capital, and Inequality: Evidence from Rural China, Working Paper, Department of Economics, University of Toronto.

Boissiere, M., J.B. Knight and R. Sabot, 1985, Earnings, Schooling, Ability, and Cognitive Skills, American Economic Review 75(5), 1016-1030.

Brandt, Loren, Jikun Huang, Guo Li, and Scott Rozelle, 2002 (Jan.), Land Rights in China: Fact, Fiction, and Issues, China Journal 47, 67-97.

Brown, Phil and Albert Park, 2002, Education and Poverty: The Effects of Credit Constraints, Intra-Household Decision Making, and School Quality on Educational Attainment in China's Poor Areas, Economics of Education Review, forthcoming.

Card, David, 1999, The Causal Effect of Education on Earnings, Handbook of Labor Economics (Elsevier Science Publishers, Amsterdam), Orley Ashenfelter and David Card, eds., Volume 3A, Chapter 20, pp. 1801-1863.

Chen, Hongyi, and Scott Rozelle, 1999, Leaders, Managers, and the Organization of Township and Village Enterprises in China, Journal of Development Economics 60(2), 529-557.

Chou, E.C., and L.J. Lau, 1987, Farmer ability and farm productivity: A study of the farm households in the Chiangmai Valley, Thailand, 1972-1978, Discussion Paper 62, Education and Training Department, The World Bank, Washington, DC.

Davidson, Russell, and James G. MacKinnon, 1997, Estimation and Inference in Econometrics (Oxford University Press, Oxford).

Duflo, Esther, 2001, Schooling and Labor Market Consequences of School Construction in Indonesia: Evidence from an Unusual Policy Experiment, American Economic Review 91(4), 795-813.

Gregory, R.G., and Xin Meng, 1995, Wage Determination and Occupational Attainment in the Rural Industrial Sector of China, Journal of Comparative Economics 21, 353-374.

Hare, Denise, 1999, 'Push' versus 'Pull' Factors in Migration Outflows and Returns: Determinants of Migration Status and Spell Duration among China's Rural Population, Journal of Development Studies 35(3): 45-72.

Heckman, James, 1974, Shadow Prices, Market Wages, and Labor Supply, Econometrica 42, 67994.

Heckman, James and V.J. Hotz, 1986, An investigation of the labor market earnings of Panamanian males: Evaluating the Sources of Inequality, Journal of Human Resources 21(4), 507-542.

Heckman, James, Anne Layne-Farrar, and Petra Todd, 1996, Human Capital Pricing Equations with an Application to Estimating the Effect of Schooling Quality on Earnings, Review of Economics and Statistics 78(4), 562-610.

Heckman, James, and Xuesong Li, 2003, Selection Bias, Comparative Advantage, and Heterogeneous Returns to Education: Evidence from China in 2000, National Bureau of Economic Research Working Paper 9877.

Ho, Samuel, Xiaoyuan Dong, Paul Bowles, and F. MacPhail, 2001, Privatization and Enterprise Wage Structures During Transition: Evidence from China's Rural Industries, Economics of Transition, forthcoming.

Jin, Hehui, and Yingyi Qian, 1998, Public versus Private Ownership of Firms: Evidence from Rural China, Quarterly Journal of Economics, 773-808.

Johnson, Emily N., and Gregory C. Chow, 1997, Rates of Return to Schooling in China, Pacific Economic Review 2(2), 101-113.

Li, Haizheng, 2003, Economic Transition and Returns to Education in China, Economics of Education Review 22(3), pp. 317-328.

Li, Tianyou, and Junsen Zhang, 1998, Returns to education under collective and household farming in China, Journal of Development Economics 56, 307-335.

Maurer-Fazio, Margaret, 1999, Earnings and education in China's transition to a market economy: Survey evidence from 1989 and 1992, China Economic Review 10, 17-40.

Meng, Xin, 1996, An Examination of wage determination in China's rural industrial sector, Applied Economics 28, 715-724.

Meng, Xin, and Junsen Zhang, 2001, The Two-Tiered Labor Market in Urban China: Occupational Segregation and Wage Differentials between Urban Residents and Rural Migrants in Shanghai, Journal of Comparative Economics 29, 485-504.

Mincer, Jacob, 1974, Schooling, experience, and earnings (Columbia University Press, New York).

Naughton, Barry, 1995, Growing Out of the Plan: Chinese Economic Reform 1978-1993 (Cambridge University Press, Cambridge, UK).

Nyberg, Albert, and Scott D. Rozelle, 1999, Accelerating China's Rural Transformation (World Bank, Washington D.C.).

Parish, William, Xiaoye Zhe and Fang Li, 1995, Non-farm work and marketization of the Chinese countryside, The China Quarterly 143, 697-730.

Psacharopoulos, George, 1985, Returns to education: a further international update and comparison, The Journal of Human Resources, 20(4), 583-597.

Psacharopoulos, George, 1994, Returns to Investment in Education: A Global Update, World Development 22(9), 1325-1343.

Psacharopoulos, George, and E. Velez, 1992, Schooling, ability, and earnings in Colombia, 1988, Economic Development and Cultural Change 40(3), 629-643.

Rozelle, Scott, Li Guo, Minggao Shen, Amelia Hughart, and John Giles, 1999, "Leaving China’s farms: Survey results of new paths and remaining hurdles to rural migration," The China Quarterly 158, 367-393.

Schultz, T. Paul, 1988, Education Investments and Returns, in Hollis Chenery and T.N. Srinivisan, eds., Handbook of Development Economics, Volume I (Elsevier Science Publishers: Amsterdam), 544-630.

Strauss, John, and Duncan Thomas, 1995, Human Resources: Empirical Modeling of Household and Family Decisions, in Jere Behrman and T.N. Srinivisan, eds., Handbook of Development Economics, Volume 3A (Elsveier Science Publishers: Amsterdam), 1885-2023.

Tsang, Mun C., 1996, Financial Reform of Basic Education in China, Economics of Education Review 15(4), 423-444.

Tu, Ping, 2000, Trends and Regional Differentials in Fertility Transition, chapter 3 in: Xizhe Pen and Zhigang Guo, eds., The Changing Population of China (Blackwell Publishers: Malden, Massachusetts), 22-33.
van der Gaag, Jacques, and Wim Vijverberg, 1989, Wage Determinants in Cote d'Ivoire: Experience, Credentials, and Human Capital, Economic Development and Cultural Change 37(2), 371-81.

West, Lorraine A., 1997, Provision of Public Services in rural PRC, chapter 6 in Financing Local Government in the People's Republic of China, Christine Wong, ed. (Hong Kong, Asian Development Bank), pp. 213-282.

World Bank, 2002, World Development Indicators CD-ROM.

Yang, Dennis T., 1997, Education and Off-Farm Work, Economic Development and Cultural Change 45, 613-632.

Yang, Dennis T., and Mark An, 2002, Human Capital, Entrepreneurship, and Farm Household Earnings, Journal of Development Economics 68(1), 65-88.

Zhang, Junsen, and Yaohui Zhao, 2002, Economic Returns to Schooling in Urban China, 19881999, working paper, Beijing University.

Zhang, Linxiu, Jikun Huang, and Scott Rozelle, 2002, Employment, Emerging Labor Markets, and the Role of Education in Rural China, China Economic Review 13(2-3), 313-328.

Zhao, Yaohui, 1997, Labor Migration and Returns to Rural Education in China, American Journal of Agricultural Economics 79(4), 1278-87.

Zhao, Yaohui, 1999, Labor migration and earnings differences: The case of rural China, Economic Development and Cultural Change 47(4), 767-82.

ZGTJNJ (Zhongguo Tongji Nianjian- China Statistical Year Book), 2001, (Beijing, China: China Statistical Press).

Table 1: Share of Labor Force Participating in Different Activities, Rural China

Sample	Farming	Local Wage Labor	Self-Employment	Migration
NBS (2001)	0.670	0.330^{*}		
Our Sample, All Individuals	0.762	0.133	0.162	0.170
Our Sample, No Migrants	0.847	0.161	0.195	

Notes: NBS statistics do not differentiate the self-employed from workers earning wages locally. In our sample, workers can participate in both farming and one off-farm activity, and therefore totals sum to more than 1.
Source: Authors' survey.

Table 2: Returns to Education in Rural China: Other Studies using the Mincer Method

	Dependent Variable	Years Data Cover	Analytical Approach	Returns to Education
Johnson and Chow (1997)	Yuan/month	1988	Individuals	4.0
Parish et al. (1995)	Yuan/year	1993	Individuals	$1.8-4.3$
Yang (1997)	Yuan/day	1990	Individuals	2.3
Meng (1996)	Yuan/day	$1986-7$	TVE workers	$0.7-1.1$
Gregory and Meng (1995)	Yuan/day	$1986-7$	TVE workers	$0.7-1.1$
Ho et al. (2001)	Yuan/year	1998	TVE workers	$3.2-5.1$

Table 3: Hourly Wages, by Type of Work, Cohort, and School Attendance

		Attended Any Post-Primary School?	
	N	no	yes
All individuals	1022	2.48	$2.99^{* *}$
Migrants		(1.95)	(2.66)
	571	2.25	$2.92^{* *}$
Individuals under 35		(1.63)	(2.38)
	672	2.43	2.77^{*}
Migrants under 35		(2.19)	(2.37)
	479	2.16	$2.83^{* *}$
		(1.63)	(2.38)

Notes: Standard deviations in parentheses. ${ }^{* *}$ - indicates difference between means significant at the 5\% level; *- indicates difference between means significant at the 10% level.

Table 4: Effects of Education and Experience of Off-Farm Wages

	Model 1		Model 2		Model 3	
	Selection Equation	Wage Equation	Selection Equation	Wage Equation	Selection Equation	Wage Equation
Years of	0.011	0.063	0.013	0.064	0.013	0.065
Education	(3.28)**	(7.52)**	(4.03)**	(7.37)**	(4.02)**	(7.30)**
Years of	-0.011	0.025	0.001	0.031	0.002	0.035
Experience	(6.00)**	(4.70)**	(0.22)	(4.55)**	(0.57)	(4.83)**
Experience,	0.003	-0.048	-0.013	-0.056	-0.015	-0.060
Squared (/100)	(0.78)	(4.81)**	(3.13)**	(4.29)**	(3.24)**	(4.52)**
Gender	0.078	0.220	0.198	0.210	0.202	0.221
(1=male)	(3.60)**	(3.53)**	(11.44)**	(3.48)**	(11.50)**	(3.51)**
Marital Status			-0.200	-0.082	-0.221	-0.106
(1=married)			(6.29)**	(0.98)	(6.65)**	(1.18)
Skill Training	0.205	0.130	0.083	0.131	0.088	0.130
(1=yes)	(11.93)**	(2.67)**	(3.82)**	(2.64)**	(3.96)**	(2.56)**
Father's Years					-0.001	0.011
of Education					(0.42)	(1.60)
Mother's Years of					-0.0001	-0.0001
Education					(0.54)	(0.19)
Instruments						
Log, Value of Household	-0.051		-0.047		-0.048	
Assets in 1999	(7.20)**		(6.69)**		(6.61)**	
Number of Male	-0.020		-0.027		-0.026	
Workers	(1.68)*		(2.28)**		(2.09)**	
Number of Female	0.067		0.068		0.066	
Workers	(6.20)**		(6.31)**		(6.01)**	
Land Endowment	-0.005		-0.005		-0.005	
	(3.40)**		(3.30)**		(3.40)**	
Inverse Mills		0.234		0.219		0.232
Ratio		(1.81)*		(1.68)*		(1.74)*
Number of Obs.	3364	1023	3364	1023	3235	986
Notes: t -statistics are in parentheses. ${ }^{*}$ - indicates significance at the 10 percent level; ${ }^{* *}$ - indicates significance at the 5 percent level. Provincial fixed effects are included in all equations. Experience is measured as years since the person left school if they went to school, and age-6 if they did not. All regressions are done using the two-step method proposed by Heckman (1974) and standard error calculations take the method into account.						

Table 5: Returns to Schooling, by Cohort and Type of Off-Farm Work

	All Individuals			Individuals 35 and under			Individuals over 35		
	Local + Migrants	Local Wage Earning	Migrants	Local + Migrants	Local Wage Earning	Migrants	Local + Migrants	Local Wage Earning	Migrants
Years of	0.064	0.043	0.078	0.105	0.089	0.117	0.029	0.026	-0.010
Education	(7.37)**	(2.94)**	(6.58)**	(8.20)**	(3.15)**	(8.06)**	(1.93)	(1.37)	-(0.26)
Years of	0.031	0.039	0.027	0.084	0.091	0.089	0.026	0.037	-0.046
Experience	(4.55)**	(2.94)**	(2.54)**	(5.11)**	(2.53)**	(4.71)**	(1.33)	(1.55)	(0.83)
Experience,	-0.056	-0.059	-0.079	-0.197	-0.177	-0.236	-0.045	-0.050	-0.008
Squared (/100)	(4.29)**	(2.49)**	(3.96)**	(3.05)**	(1.35)	(2.94)**	(1.60)	(1.43)	(0.11)
Gender	0.210	0.176	0.239	0.116	0.161	0.126	0.390	0.193	1.506
(1=male)	(3.48)**	(1.47)	(3.44)**	(2.07)**	(1.16)	(2.03)**	(1.88)	(0.91)	(2.41)**
Married?	-0.082	-0.016	-0.217	-0.252	-0.124	-0.331	0.164	0.106	0.708
(1=yes)	(0.98)	(0.13)	(1.78)	(2.39)**	(0.70)	(2.27)**	(0.75)	(0.40)	(1.24)
Skill Training?	0.131	0.139	0.169	0.090	0.032	0.130	0.232	0.238	0.457
(1=yes)	(2.64)**	(1.94)	(2.38)**	(1.53)	(0.29)	(1.82)	(2.69)**	(2.52)**	(1.68)
Inverse Mills	0.219	-0.011	0.556	0.301	0.351	0.474	0.079	-0.192	1.337
Ratio	(1.68)	(0.05)	(2.99)**	(2.14)**	(1.15)	(2.54)**	(0.27)	(0.54)	(1.69)
Number of Obs.	. 3364	3364	3364	1515	1515	1515	1906	1906	1906

Table 6: Differential effects of primary education, and post-primary education on wages

	All Individuals			
Explanatory	Welection Equation	Individuals 35 and under Equation	Selection Equation	Wage Equation
Variables	0.016	0.039	0.046	0.060
Years of	$(2.58)^{* *}$	$(1.99)^{* *}$	$(2.95)^{* *}$	(1.80)
Primary School	0.011	0.074	0.016	0.115
Years of Post-	$(2.29)^{* *}$	$(6.55)^{* *}$	(1.85)	$(7.86)^{* *}$
Primary School	0.000	0.033	0.021	0.088
Years of	(0.10)	$(4.74)^{* *}$	$(2.31)^{* *}$	$(5.35)^{* *}$
Experience	-0.013	-0.060	-0.065	-0.229
Experience,	$(2.83)^{* *}$	$(4.53)^{* *}$	(1.79)	$(3.39)^{* *}$
Squared (/100)	0.197	0.206	0.172	0.113
Gender	$(11.35)^{* *}$	$(3.43)^{* *}$	$(5.50)^{* *}$	$(2.02)^{* *}$
(1=male)	-0.200	-0.079	-0.338	-0.230
Marital Status	$(6.26)^{* *}$	(0.95)	$(8.27)^{* *}$	$(2.16)^{* *}$
(1=married)	0.083	0.131	0.096	0.088
Skill Training?	$(3.80)^{* *}$	$(2.65)^{* *}$	$(2.96)^{* *}$	(1.51)
(1=yes)	-0.047		-0.077	
Log, Value of	$(6.69)^{* *}$		$(6.28)^{* *}$	
HH Assets, 1999	-0.027		-0.035	(1.65)
Number of	$(2.26)^{* *}$		0.109	
Male Workers	0.068		$(5.74)^{* *}$	
Number of	$(6.26)^{* *}$		-0.006	
Female Workers	-0.005		$(2.22)^{* *}$	
Land	$(3.30)^{* *}$			0.288
Endowment (mu)				$(2.06)^{* *}$
Inverse Mills				
Ratio				

Number of Obs. $3364 \quad 1023 \quad 1515 \quad 672$

Notes: t-statistics are in parentheses. **- indicates statistical significance at the 95% level. Provincial fixed effects are included in all equations. Experience is measured as years since the person left school if they went to school, and age - 6 if they did not. All regressions are done using the two-step method proposed by Heckman (1974) and standard error calculations take the method into account.

Table 7: Returns to Schooling, using alternative specifications

	Their Estimate	Using 2000 Data Set Their Method	Our Method
Paper	4.0%	3.0%	6.5%
Johnson and Chow (1997)	$1.8-4.3 \%$	5.7%	6.4%
Parish et al. (1995)	2.3%	4.9%	6.7%
Yang (1997)	1.1%	2.7%	6.1%
Meng (1996)	1.1%	2.7%	6.1%
Gregory and Meng (1995)			

Notes: Estimates in column 2 were made by applying the methodology listed in the paper to the data set described in this paper. Column 3 includes the estimate for the data in this paper using our method, including only the subsample of workers used in their papers where appropriate. All estimates are significant at the 95 percent level.

Notes: The five regional are from Psacharopoulos (1994), Table 4. "Asia" does not include Japan, the "Middle East" includes all non-OECD European countries in Europe and North Africa, and "Latin America" includes all countries in the Caribbean. The point for rural China are based on the average level of education in the data used in this paper, and the returns to schooling are an average of the papers that use the Mincer method in Table 2.

Figure 1: Educational Attainment and Returns to Schooling

Notes: The five regional points are from Psacharopoulos (1994), Figure 2. The point for rural China are based on the average level of education and the returns to education found for individuals aged 35 and under in this paper. The point "Rural China (ours)" reflects our estimates for the entire sample; the point "Rural China*" reflects estimates for individuals under 35.

Figure 2: Educational Attainment and Returns to Education, Revisited

Appendix Table 1: Summary statistics

	Off-Farm Workforce		All Others	
Variable	Mean	Std. Dev.	Mean	Std. Dev.
All individuals				
Hourly wage	2.83	2.47	-	-
Years of Education	7.68	2.97	5.45	3.56
Years of Primary School	5.45	1.33	4.25	2.32
Years of Post-Prim. School	2.22	2.15	1.19	1.76
Years of Experience	17.46	13.27	29.48	15.82
Skill Training?	0.30	0.46	0.16	0.36
Good grades? (1=yes)	0.25	0.43	0.18	0.38
Bad grades? (1=yes)	0.13	0.34	0.11	0.31
Father's Years of Ed.	4.15	3.54	2.87	3.29
Mother's Years of Ed.	2.17	3.08	1.19	2.48
Migrant? (1=yes)	0.56	0.50	-	-
Individuals under 35				
Hourly wage	2.69	2.33	-	-
Years of Education	8.13	2.68	7.16	2.94
Years of Primary School	5.68	0.94	5.30	1.49
Years of Post-Prim. School	2.44	2.17	1.86	1.95
Years of Experience	9.49	6.33	12.97	7.02
Skill Training?	0.31	0.46	0.22	0.41
Good grades? (1=yes)	0.23	0.42	0.17	0.37
Bad grades? (1=yes)	0.15	0.35	0.15	0.36
Father's Years of Ed.	5.28	3.36	4.67	3.41
Mother's Years of Ed.	2.96	3.32	2.54	3.21
Migrant? (1=yes)	0.72	0.45	-	-

Notes: 1022 individuals are off-farm workers and are included in columns 1-2; 2341 individuals are not and are included in columns 3-4. Of the off-farm workers, 672 are 35 or under, and 841 are 35 or under and do not work off-farm. For 128 observations, the father's education level was unknown, so these observations are not included.

Appendix Table 2: Multinomial Logit Regressions Describing Activity Choice

	All Individuals			Individuals Aged 35 and under		
	Migration	Local Wage Employment	Self- Employment	Migration	Local Wage Employment	Self- Employment
Years of	0.038	0.085	-0.008	0.130	0.136	0.137
Education	(1.34)	(3.19)**	(0.32)	(3.20)**	(2.72)**	(2.79)**
Years of	-0.007	0.063	0.030	0.196	0.211	0.351
Experience	(0.25)	(2.59)**	(1.27)	(3.67)**	(2.43)**	(5.07)**
Experience,	-0.135	-0.153	-0.109	-0.715	-0.587	-1.086
Squared (/100)	(2.16)**	(3.36)**	(2.54)**	(3.48)**	(1.91)	(4.30)**
Gender	1.226	1.574	1.384	0.934	1.506	1.464
(1=male)	(8.32)**	(9.16)**	$(10.72)^{* *}$	(5.73)**	(6.45)**	(8.27)**
Married?	-1.163	-0.353	0.404	-1.812	-0.921	-0.245
(1-yes)	(5.32)**	(1.63)	(1.74)	(6.38)**	(2.75)**	(0.72)
Skill Training?	0.988	0.716	1.051	0.805	0.686	0.886
(1=yes)	(6.67)**	(4.45)**	(7.36)**	(5.16)**	(2.94)**	(4.04)**
Log, Household	-0.152	-0.006	0.546	-0.203	-0.061	0.585
Assets, 1999	(2.54)**	(0.09)	(9.18)**	(3.32)**	(0.64)	(5.86)**
Number of	-0.080	-0.371	-0.138	-0.060	-0.524	0.025
Male Workers	(0.78)	(3.61)**	(1.11)	(0.51)	(2.94)**	(0.20)
Number of	0.378	0.204	-0.152	0.467	0.466	-0.129
Female Workers	(4.77)**	(2.63)**	(1.51)	(4.96)**	(3.77)**	(0.85)
Land	-0.034	-0.035	-0.034	-0.026	-0.027	-0.010
Endowment (mu)	(2.91)**	(2.31)**	(2.97)**	(2.22)**	(1.42)	(0.75)
Regression Statistics						
Number of Obs.		3364			1515	
Pseudo Log-Likel	hood	-3151.9			-1599.4	
Pseudo R^{2}		0.22			0.179	

Notes: Asymptotic z-statistics in parentheses are based on standard errors clustered at the village level. ${ }^{* *}$ - indicates significance at the 5 percent level. Columns 1-3 represent the first regression; columns 4-6 represent the second regression. Both regressions include provincial dummy variables.
Appendix Table 3: Determinants of Off-Farm Labor Participation, by Cohort and Type of Off-Farm Work

[^0]: *Alan de Brauw is assistant professor, Department of Economics, Williams College, and Scott Rozelle is professor, Department of Agricultural and Resource Economics, University of California, Davis. Please direct all correspondence to Alan de Brauw, Department of Economics, Williams College, Williamstown, MA 01267 (e-mail: alan.d.debrauw@ williams.edu; phone: (413)597-4373; FAX: (413)597-4045). We are grateful to Belton Fleisher, Qiuqiong Huang, Albert Park, J. Edward Taylor, Jim Wilen, Yigang Zhang, and an anonymous referee for comments on the manuscript. The authors acknowledge the support of the Ford Foundation, Beijing. Rozelle is a member of the Giannini Foundation of Agricultural Economics.

