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Background. Risk factors increase the incidence and
severity of chronic disease. To examine future trends
and develop policies addressing chronic diseases, it is
important to capture the relationship between exposure
and disease development, which is challenging given lim-
ited data. Objective. To develop parsimonious risk factor
models embeddable in chronic disease models, which are
useful when longitudinal data are unavailable. Design. The
model structures encode relevant features of risk factors
(e.g., time-varying, modifiable) and can be embedded in
chronic disease models. Calibration captures time-varying
exposures for the risk factor models using available cross-
sectional data. We illustrate feasibility with the policy-rele-
vant example of smoking in India. Methods. The model is
calibrated to the prevalence of male smoking in 12 Indian
regions estimated from the 2009–2010 Indian Global Adult
Tobacco Survey. Nelder-Mead searches (250,000 starting
locations) identify distributions of starting, quitting, and re-
starting rates that minimize the difference between mod-
eled and observed age-specific prevalence. We compare

modeled life expectancies to estimates in the absence of
time-varying risk exposures and consider gains from hypo-
thetical smoking cessation programs delivered for 1 to 30
years. Results. Calibration achieves concordance between
modeled and observed outcomes. Probabilities of starting
to smoke rise and fall with age, while quitting and restarting
probabilities fall with age. Accounting for time-varying
smoking exposures is important, as not doing so produces
smaller estimates of life expectancy losses. Estimated im-
pacts of smoking cessation programs delivered for different
periods depend on the fact that people who have been
induced to abstain from smoking longer are less likely to
restart. Conclusions. The approach described is feasible
for important risk factors for numerous chronic diseases.
Incorporating exposure-change rates can improve modeled
estimates of chronic disease outcomes and of the long-term
effects of interventions targeting risk factors. Key words:
model calibration methods; risk factors; chronic disease;
time-varying risks; smoking; India. (Med Decis Making
2015;35:196–210)

Changes in the prevalence and intensity of risk
factors drive the increasing burden of many

chronic diseases, prompting calls to implement mit-
igation policies focused on risk factors.1 To under-
stand the likely future trends of chronic diseases
and to develop policies that efficiently reduce their
burden, it is essential to understand the relationship
between risk factor exposure and the development
of chronic disease. However, because chronic dis-
eases may not develop until decades after risk expo-
sure, empirical studies of the risk factor–disease
relationship and the effects of risk factor interven-
tions may be infeasible. In lieu of such studies, sim-
ulation models can be used.

Two methodological challenges arise when
developing such models. First, the model must
incorporate the relevant disease process as well
as exposures to risk factors and resulting effects
while remaining computationally tractable and
externally interpretable. Second, modeling both
a disease and its risks increases data requirements.
This can be particularly challenging in developing
countries, where risk factor exposure levels are par-
ticularly important given rapidly increasing chronic
disease rates but where only limited data are avail-
able.2–4

The risk factors that are most relevant to the global
burden of chronic diseases (e.g., smoking and
obesity)5 share specific characteristics that must
be incorporated into the model. Namely, they are
time varying, are modifiable, and convey risks for
incidence and severity that change based on exposure
duration. Past work on modeling the prevalence and
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effects of risk factors includes closed-form epidemio-
logical estimates based on population-attributable
fractions and improvement in outcomes estimates
based on risk factor prevalence at baseline.6,7 Other
estimation methods account for movement between
risk categories over a lifetime. Direct estimation from
longitudinal data of transition rates between risk factor
categories is possible with the use of statistical com-
peting risk techniques and time-varying covariate
techniques, but such approaches require population-
representative longitudinal data.8–10 Some researchers
have developed simulation models that rely on age-
specific prevalence to estimate ‘‘net transition rates’’
but with no change in risk categories for individuals
when the overall prevalence in risk categories remains
stable across ages.11,12 Such an approach is limited
when mortality rates and rates of transition between
risk factor categories are affected by an individual’s
duration of exposure.

The goal of our study was to develop methods for
modeling chronic diseases and their risk factors. We
developed model structures that encode the relevant
features of risk factors (e.g., time-varying), while
being simple enough to embed within a complex

chronic disease model, and employed calibration
procedures to capture time-varying exposures that
use commonly available, cross-sectional survey
data. Our risk factor models allow for the possibility
that mortality and transition rates between risk cate-
gories can depend on the duration of exposure to
a risk factor. We illustrate the feasibility and utility
of this approach with the policy-relevant example
of a model of smoking behavior among men in India
and hypothetical smoking cessation interventions.

METHODS

Risk Factor Model Structure

Our risk factor model of smoking among men in
India derives from a family of simplified risk factor
models (Table 1). Because the goal is to illustrate
risk factor models that can be embedded in a chronic
disease model and the calibration of such risk factor
models, we employ a highly stylized ‘‘chronic dis-
ease’’ Markov model (Figure 1A), consisting of 2
states (alive and dead) with an average age-specific
mortality rate (m(a) for individuals of age a) moving
portions of the cohort from alive to dead in each
cycle. In practice, the alive state will be divided
into more states (e.g., no chronic disease, mild
chronic disease, severe chronic disease). In this first
model, individuals are not distinguished by risk
exposure.

The most important feature for risk factor model-
ing is whether the risk factor is fixed or time-varying.
Risk factors such as sex are represented with fixed
strata that remain constant for an individual from
birth through death and have a simplified influence
via an increased chronic disease risk and consequent
increased mortality (mhigh-risk(a) . mlow-risk(a)) (Figure
1B). While we illustrate a model with 2 strata, more
strata are easily incorporated. When individuals can
change their risk status (i.e., becoming lower or
higher risk), a time-varying risk factor structure is
required (Figure 1C). The model structure can extend
to incorporate the fact that the likelihood of changing
one’s risk status and the likelihood of disease inci-
dence or death can vary with the duration of high
risk exposure (Figure 1D). Likewise, the model can
accommodate the case in which people who have
been previously high risk but have now lowered their
risk are unlike those who have always been low risk
because of the impact of past cumulative exposures
or because other unrepresented factors that correlate
with the modeled risk factors differ between
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‘‘previously high risk’’ and ‘‘never high risk’’ and do
not change when people become ‘‘previously high
risk’’ (e.g., alcohol consumption patterns among pre-
vious v. never smokers) (Figure 1E).

Chronic disease and mortality risks are often
related to exposures to more than 1 risk factor. For
example, the risk of cardiovascular disease is related
to smoking, diet, and physical activity. While model-
ing a second risk factor is possible using double strat-
ification analogous to Figure 1C and 1D, it is also
possible to capture multiple risk factors in a unidi-
mensional scale of overall risk.13–15 However, com-
plexities such as dependence between changes in
risk factor exposures (e.g., an individual who quits
smoking may also increase his physical activity)
may argue for a microsimulation in such a case. None-
theless, our model structures are embeddable in both
the Markov cohort and microsimulations and are also
useful for earlier steps in iterative model develop-
ment commonly undertaken as part of developing
detailed microsimulations that may incorporate mul-
tiple risk factors.

Data Needs and Calibration Methods for Simplified
Risk Factor Models

Models with fixed risk strata (e.g., such as that in
Figure 1B) only require data on prevalence, poten-
tially stratified by age and sex. Models with time-
varying risk factors (e.g., such as those in Figure
1C–E) require transition rates between risk factor cat-
egories that increase the data needs beyond the prev-
alence for these rates to be identifiable. Additionally,
it is important to include differential mortality effects
due to risk factor exposure that arise both via an
increased chronic disease risk and severity and via
other channels of increased mortality (e.g., in the

context of a smoking and diabetes model, the effect
of smoking on diabetes as well as an elevated cancer
risk).

When direct estimation of transition rates between
risk factor categories is not feasible due to the limited
availability of longitudinal data, calibration methods
applied to cross-sectional data such as household
surveys provide a useful indirect approach to esti-
mating transition rates between risk factor catego-
ries.16 For the risk factor models in Figure 1C-E, 2 or
more sets of transition rates are needed to character-
ize movement between risk levels. Assuming that
these rates depend on age, this implies that the num-
ber of calibration targets required to reach identifi-
ability is larger than age-specific prevalence. For
example, for the model in Figure 1C, data on age-
specific prevalence and the age-specific distribution
of the duration of risk factor exposure would gener-
ally be sufficient to instantiate the model, provided
one is willing to impose a parametric form on how
duration alters rates of change in an individual’s cur-
rent risk level. For example, the probability of quit-
ting smoking in the next period (Pquit) for someone
of a given age could be assumed to decrease with
the duration of smoking as follows:

Pquit age;durationð Þ5 1

duration
Pquit age;duration 5 0ð Þ:

Such relationships might be estimated from limited
longitudinal data or from other contexts in which
datasets are more readily available.

We now describe the process of calibrating our risk
factor model. Model calibration is the process of sys-
tematically varying model uncertainties or unknown
inputs until model outputs are consistent with
observed data. Its application has become increas-
ingly common in health.17–20 Current efforts focus

Table 1 Taxonomy of Risk Factor Model Types for Chronic Diseases

Risk Factor Model Description Risk Factor Examples

Time-invariant risk strata (Figure 1B) � Sex (male, female)
� Genotype

Time-varying risk strata
Not influenced by duration of status or

prior exposures (Figure 1C)
� Age and cancer development

Influenced by duration of status but not
prior exposures (Figure 1D)

� Obesity and chronic diseases

Influenced by duration of status and prior
exposures (Figure 1E)

� Smoking behavior and cancer development
� Pollution exposure and cancer development
� Development of severe dengue fever in which an initial episode of

dengue alters the risk/severity of subsequent exposures
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on incorporating calibration into best-practice guide-
lines,21 increasing the use of calibration through
tutorials that make its methods accessible, and prop-
agating good reporting standards to ensure its rigor
and reproducibility.21–23 There are still many open
questions about how best to apply calibration in var-
ious modeling situations such as the case that we con-
sider in this article: time-varying risk factors that
affect chronic disease outcomes. In general, model
calibration involves a standard set of steps,24 which
we apply to our time-varying risk factor model.

Calibration target estimation. The risk factor
model must be calibrated to a set of target values.
We use the age-specific prevalence levels of a risk
factor (e.g., smoking), estimated from cross-sectional
data with logistic regressions (or, for more than 2
categories, multinomial logistic regressions), pre-
dicting age-specific point estimates and bootstrap-
ping age-specific confidence intervals. To estimate

levels of a risk factor across age groups j with various
covariates, we minimize the following:

LogitðYiÞ5 B0 1
X

j

ðBjajÞ1 BX 1 Errori;

where Yi is the outcome of interest (e.g., being a cur-
rent smoker) for individual i, and aj is an indicator
variable for age group j, B is a vector of coefficients,
and X is a vector of other covariates (e.g., geographic
region). The equation could also include interactions
between age and the vector of covariates. By estimat-
ing the regression across age categories and other
covariates (e.g., urban/rural location or region), we
construct targets with information borrowed across
groups, which can then be propagated to inform our
calibrated parameters for each group.

Using cross-sectional data collected at a single
time point to infer the age-specific patterns of a cohort
requires the assumption that there are no strong
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Figure 1 Simplified Markov model structures incorporating different types of risk factors: (A) No risk factors; (B) fixed risk strata; (C) time-
varying risk strata, not depending on the duration of status or prior exposure; (D) time-varying risk strata depending on the duration of

status; and (E) time-varying risk strata depending on the duration of status and prior exposure. In all panels, transitions can occur between

health states (rounded rectangles) along directed black edges at each time step. Transitions can depend on age (a) and duration (d) of expo-

sure, depending on the model. The proportion of the cohort that does not transition in a given cycle remains in their current health state.
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secular time trends that affect risk factor exposure
(e.g., decreasing smoking prevalence in subsequent
birth cohorts). If such an assumption is not realistic
in a particular context, one can construct age
period–specific patterns of prevalence from diagonal
birth cohorts as observed in multiple cross-sectional
surveys conducted at different time points (e.g., esti-
mation based on prevalence among 20- to 25-year-old
people in 2000, prevalence among 25- to 30-year-old
people in 2005, etc.), which is an approach that
increases data requirements for successful
calibration.

Objective function. Ideally, the objective function
for the calibration process should minimize the dis-
tance between a set of model outputs and the cali-
bration targets in a way that is unitless and
incorporates the relative levels of uncertainty in
the various calibration targets. For example, the
objective function can be defined as a linear combi-
nation of the difference between each model output i
(Mi), conditional on a given set of inputs and the
point estimate of each target (Ti), scaled by the stan-
dard error of the estimate of each target (sei), and
potentially weighted for output i (wi) based on an
additional importance consideration:

Objective M inputsð Þ;Tð Þ5
X
i2T

wi
Mi � Ti

sei

� �2
" #

:

For applications in which targets all are in the same
units, targets are roughly equally uncertain, and the
analyst believes that they are equally important, one
might forego wi and sei, setting both implicitly to 1.
When feasible, defining the objective function in
terms of the underlying likelihood of the data or
a function proportional to the likelihood may have
important advantages in terms of linkage to statistical
theory, efficiency, and consistency of estimates of
parameter uncertainty.

Search constraints. Constraints on the values of
model inputs are often relevant. In the case of cali-
brating a discrete-time model’s probabilities, the val-
ues must fall in the range of [0,1]. While we typically
start searches using a uniformly distributed prior
over this range, some commonly used search optimi-
zation procedures such as Nelder-Mead (described
below) do not support search constraints and may
explore infeasible points (i.e., those \0 or .1).
Instead of implementing the constraints directly in
the algorithm, which may be complex and prone to
bugs or may yield suboptimal results due to prema-
ture collapse of the Nelder-Mead search simplex, we

often use a large penalty term in the objective func-
tion if the constraints are violated that grows even
larger for larger violations of the constraints (i.e.,
large penalty for probability = 1.1 and even larger
penalty for probability = 2.0), acknowledging that
care must be taken depending on the search optimi-
zation procedure used to overcome difficulties with
convergence.25–28

Search procedure for optimization. Many well-
studied procedures exist for searching for optimum
solutions.26 We often use Nelder-Mead because it
is an efficient, directed search technique.28 Other
calibration techniques that exploit the specific fea-
tures of the problem have been described recently.29

We start the Nelder-Mead search from many differ-
ent initial simplexes to reduce the risk of local
optima traps. This approach is important because
the models that we consider are not necessarily glob-
ally concave as a function of their parameters, and
thus the objective function is not necessarily
concave.

Identifying the best-fitting input parameter com-
binations. Because the search is conducted in
a hyperdimensional space, it is not simple to deter-
mine whether the points identified as good fitting by
multiple searches all correspond to a single opti-
mum even if they have the same goodness-of-fit
value as computed by our objective function. There-
fore, we treat separately all good-fitting points iden-
tified by our multiple calibration searches and use
them to define the range of uncertainty in model-pre-
dicted outcomes, consistent with the uncertainty in
the data to which we calibrated. Specifically, after
conducting our calibration, we run the model multi-
ple times (once per good-fitting set of points) to gener-
ate a range of predicted outcomes. Although this can
be computationally intensive, it protects against aver-
aging across distinct optima and thereby using input
values that correspond to no optimum at all.17–20

The Example of Smoking in India

Risk factor model. We illustrate this approach using
the example of smoking among men in India. The
goal is to determine sets of starting, quitting, and
restarting smoking rates for various Indian subpopu-
lations of men that can be embedded in models of
chronic diseases including tuberculosis,30 cancer,
and other diseases related to smoking. The structure
of the model is shown in Figure 2 and is similar to
that shown in Figure 1E, except that here, men
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who return to high risk (i.e., restart smoking) are dis-
tributed among the different categories of high risk
as distinguished by duration (details below). Dura-
tion is categorized from less than 1 year (d = 0) to
more than 4 years (d = 4).

Given the diversity of age-specific smoking preva-
lence patterns across the more than 500 million men
in India, we separately calibrated 12 models of smok-
ing that share the common structure shown in Figure
2 but represent different population groups defined
by urban/rural status and 6 Indian geographic regions
(Central, East, North, Northeast, South, West).

Parameters to be calibrated. The model simulates
men aged a = 10, . . ., 90 years. We calibrated the fol-
lowing 3 parameters: pstart(a), pquit(a, d = 0), and pre-

start(a, d = 0). These are, respectively, the probability
that a person of age a who has never smoked begins
smoking, the probability that a person of age a who
has smoked for less than 1 year quits smoking, and
the probability that a former smoker of age a who
now has not smoked for less than 1 year restarts
smoking. The analogous quitting and restarting
parameters for longer durations (d = 1, 2, 3, and
�4 years) were not calibrated but were calculated
from the calibrated quantities as follows:

pquit a;dð Þ5 ðaqÞdpquit a;d 5 0ð Þ;d 5 1; 2; 3; 4 and

prestart a;dð Þ5 ars dð Þprestart a;d 5 0ð Þ;d 5 1; 2; 3; 4:

We assumed that the probability of restarting smok-
ing for former smokers declines as a function of dura-
tion in that risk state and that likewise the probability
of quitting smoking for current smokers declines as
a function of duration in that state. We estimated
the search range for pstart(a) (which accounts for the
fact that older individuals who have never smoked
are less likely to start smoking and therefore ranges
from 0 to a value of \1) and the values of the decay
parameters aq and ars(d) (q referring to quit and rs
referring to restart) from the Trivandrum Oral Cancer
Study (TOCS), which is a large longitudinal study
that repeatedly measured smoking status in a geo-
graphically defined cohort in southern rural India (n
= 27,243 for men with 3 measures per individual)
(see further details in the Appendix).31 While we
used longitudinal data to directly inform aq and
ars(d), we note that in the absence of the TOCS data,
we could have calibrated these parameters as well.
We opted to use the TOCS data primarily for efficiency
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Figure 2 Model of smoking risk behavior in India, illustrated for age group a. The model schematic represents 3 general categories of smok-

ing-related risk: those who have never smoked, those who are current smokers, and those who previously smoked. These risk categories and

transitions between them are stratified by age (a) and duration of status (d), as appropriate. This enables risks of mortality as well as risks of

starting, quitting, and restarting smoking to differ across these characteristics.
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reasons but also to illustrate a calibration situation in
which some longitudinal data are available.

Evidence suggests that former smokers who have
successfully quit for a longer period are more success-
ful in quitting after restarting smoking than former
smokers who have quit for shorter periods of
time.32–34 To capture this effect without unduly com-
plicating the model, we made the following assump-
tion. Instead of having all former smokers who restart
smoking return to the category of ‘‘current smoker with
duration d = 0,’’ we assumed that previous smokers
who restarted joined ‘‘current smoker’’ duration groups
in inverse relationship to their duration of being a previ-
ous smoker. Thus, individuals who had been previous
smokers for�4 years returned to being current smokers
with a duration of 0 to 1 years, whereas those who had
been previous smokers for 3 to 4 years returned to being
current smokers with 1 to 2 years’ duration. All individ-
uals who had quit less than 3 years previously returned
to being current smokers with 3 to 4 years’ duration.
The simplifying assumption necessary to allow for dif-
ferential rates of restarting smoking based on the dura-
tion of cessation also results in some smokers of short
duration who quickly restart being exposed to mortality
and subsequent quitting probabilities in excess of their
actual smoking duration.

Calibration targets. The calibration procedure
used 3 targets for each age group a = 10, . . ., 90: over-
all prevalence of smokers among men of age a,
which we denote by pTARGET

S ðaÞ; prevalence of
long-term smokers (�4 years) among men of age a,
which we denote by pTARGET

LT ðaÞ; and prevalence of
former smokers among men of age a, which we
denote by pTARGET

FS ðaÞ. Because the reported age
and number of individuals over the age of 75 years
are more imprecise, we report results for targets for
individuals up to age 75 years.

We used data from the Indian Global Adult
Tobacco Survey (GATS) (2009–2010) to define cali-
bration targets (never, current, and past smokers).35

We confined our analysis of the GATS to male
respondents whose reported age was 15 to 80 years,
and we assumed, given difficulties in recalling the
exact age for Indians born earlier in the century,
that 71 to 80 years represented individuals older
than 80 years as well (n = 33,413 men; approximately
200–500 individuals per subgroup defined by age,
urban/rural status, and region). We categorized indi-
viduals as current long-term smokers (men reporting
current smoking of�4 years’ duration), current short-
term smokers (men reporting current smoking with
a duration \4 years), former smokers, and never

smokers. We also classified individuals by the Indian
region of residence and whether they lived in a rural
or urban area (see the GATS questionnaire).36

To capture the age-specific proportions of each
subpopulation in each smoking category, we used
a multinomial logistic regression with an individu-
al’s smoking category as the outcome variable. This
allowed us to ensure that the predicted probabilities
of being in each category would sum to 100%. Predic-
tors used in the model were indicators for age cate-
gory (15–20, 21–30, 31–40, 41–50, 51–60, 61–70,
71–80 years), indicators for geographic region, indica-
tors for urban/rural residence, interactions between
age and region indicators, and interactions between
region and urban indicators. The regression appropri-
ately incorporated survey sample weights of individu-
als that reflected the survey design. For each
combination of these indicators, we predicted the pro-
portion of the male population falling into each group.
For example, we predicted the proportion of the male
population who were never smokers and who were 31
to 40 years of age and lived in the northern region in
urban areas. Likewise, we predicted the proportion of
this group who were long-term current smokers and
then repeated this for all groups and smoking categories.

Because these estimates represented means for age
groups with generally 10-year widths, but our calibra-
tion required targets for each year of age (a = 10, . . .,
90), we used a piecewise cubic Hermite interpolation
of the points predicted from our multinomial logistic
regressions (Stata program PCHIPOLATE37) in which
we assumed that smoking prevalence and former
smoking prevalence were both zero at age 10 years
and that the means predicted by our regression repre-
sented a value near the midpoint of the age group
(e.g., age 17 years for the 15- to 20-year category).
Interpolations were performed separately for each
geographic and urban/rural group to produce sepa-
rate sets of age-specific calibration targets for each
group. Calibration targets were extrapolated beyond
the age range used in the GATS analyses for several
reasons. For younger children, smoking prevalence
is known to be very low, and the experience of smok-
ing between the ages of 10 to 20 years determines the
distribution of durations of current and former smok-
ers. For older individuals, exact ages in the GATS
were likely imprecise as seen in other household sur-
veys, and the life expectancy contribution of time
lived above age 80 years is increasing. Because we
use the model to project life expectancy for smoking
interventions, we want to ensure that it performs rea-
sonably in the absence of interventions even at older
ages.
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Our calibration to cross-sectional, age-specific
smoking prevalence reflects the limited availability
of data and the assumption of no strong birth cohort
differences in the risks of starting, quitting, or
restarting smoking. Limited data from other cross-
sectional surveys conducted in different calendar
years including the National Family and Health Sur-
veys,38 World Health Survey,39 and District-Level
Health Surveys35 provide some support for this
assumption (Appendix).

Model inputs (mortality rates). To define
mortality-related model inputs, we directly com-
puted age-, urban/rural-, region-, and smoking
status–specific mortality rates for men from 2 pri-
mary sources. The Indian Sample Registration Sys-
tem40 provides population-representative life tables
and associated mortality rates stratified by these
characteristics with the exception of smoking; we
denote these mortality rates by mavg(a). The Indian
Million Deaths Study41 contains sex- and age-spe-
cific relative risks of death due to smoking; we
denote this by RRs(a). We computed death rates for
relevant groups of nonsmokers, mNS(a), in each of
the 12 regions using the following equation:

pTARGET
S ðaÞmNS að ÞRRs að Þ1 pTARGET

NS ðaÞ mNS að Þ5 mavg að Þ:

In the above equation, pTARGET
NS að Þ denotes the

prevalence of nonsmokers among men of age

a (pTARGET
NS að Þ = 1 – pTARGET

S ðaÞ); these prevalences
were those that we estimated from the GATS. The
product mNS(a)RRs(a) is the death rate for smokers
of age a, mS(a). Mortality calculations use point esti-
mates from these sources to compute rates entered
directly into the model.

Mortality risks from current and former smoking
depend on the duration of current smoking, cumula-
tive lifetime exposure to smoking, and time since
stopping smoking.42–46 To reflect the attenuation of
increased mortality risks as individuals who quit
remain nonsmokers, we assumed that the mortality
rate for former smokers, mFS(a), is between those of
smokers and nonsmokers and is nearly as high
(95% smoker rate 1 5% nonsmoker rate) as that of
current smokers for the first year after smoking and
attenuates to nearly as low (5% smoker rate 1 95%
nonsmoker rate) as for nonsmokers after having
been a former smoker for more than 4 years, consis-
tent with evidence that after about 10 years, the mor-
tality risks of nonsmokers and those who have
smoked far back in the past are largely similar.42,45,46

Specifically, we estimate death rates for each

duration category of nonsmoking d (1, 2, 3, or �4
years) as the following:

mFS a; 1ð Þ5 :95mS að Þ1 :05mNS að Þ;

mFS a; 2ð Þ5 :65mS að Þ1 :35mNS að Þ;

mFS a; 3ð Þ5 :35mS að Þ1 :65mNS að Þ; and

mFS a; 4ð Þ5 :05mS að Þ1 :95mNS að Þ:

Calibration procedure. For each of the 12 regional
models, we generated random starting simplexes of
values for the 3 sets of probabilities to be calibrated
(pstart(a), pquit(a, d = 0), and prestart(a, d = 0), for age
a = 10, . . ., 90). To do so, we selected random values
of these 3 parameters for ages a = 10, 15, 18, 20, 23,
25, 30, 35, 45, 55, 65, 75, 85, and 100. Within each
parameter, we linearly interpolated between the val-
ues at these ages to develop estimates for the full
range of ages a = 10, 11, 12, . . ., 90. We assumed
that at time zero (i.e., a = 10), everyone in the popu-
lation is a nonsmoker. We projected the model for-
ward for 80 years to populate the various risk
groups (smoker, nonsmoker, former smoker for
each age group a = 10, . . ., 90, and for each risk dura-
tion d = 1, . . ., 4 for smokers and former smokers).
We then compared the model’s calculated smoking

prevalence values, pMODEL
S ðaÞ, pMODEL

LT ðaÞ, and

pMODEL
FS ðaÞ, to the target values that we estimated:

pTARGET
S ðaÞ, pTARGET

LT ðaÞ, and pTARGET
FS ðaÞ. We evalu-

ated each parameter set using the following objec-
tive function:

J 5
X

a
pTARGET

S að Þ � pMODEL
S að Þ

� �2
1

h
pTARGET

LT að Þ � pMODEL
LT að Þ

� �2
1 pTARGET

FS að Þ � pMODEL
FS að Þ

� �2�:

Because all calibration targets were expressed in the
same units and had reasonably similar uncertainty
ranges in the age ranges used, we chose to use an
unweighted least squares approach.

We applied the Nelder-Mead search algorithm to
each simplex, selecting new values as directed by
the search algorithm after each iteration. We contin-
ued the procedure until the objective function
changed by less than 0.01% or after 40,000 iterations,
whichever came first.

For each subpopulation, we repeated the calibra-
tion procedure with 250,000 different random
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starting simplexes of values for the 3 probabilities.
We then selected the 100 parameter sets with the
best fits (minimum objective function value) and
used these for model projections to reflect the mean
and uncertainty in these projections consistent with
the calibration data, weighting the model-projected
outcomes by the inverse of the objective function
value to emphasize fits from the best of the 100
best-fitting sets.17,47 Additionally, for the 100 best-
fitting parameter sets, we compared the amount of
error for each of the 3 parameter values and each
age group (difference between model-projected v. tar-
get value). We did this to make sure that errors were
approximately equal, indicating that a good fit was
obtained for all 3 targets and not just for the aggre-
gated objective function J.

We implemented the models in C++48 using the
GNU Scientific Library implementation of Nelder-
Mead searches (gsl_multimin_fminimizer_nmsim-
plex2)49 and the Mersenne Twister pseudorandom
number generator.50

Model projections. Predictions made with the
calibrated models included life expectancy lost
due to smoking in each Indian geographic subgroup
relative to an otherwise similar population of life-
time nonsmokers and differences in predicted life
expectancy lost due to smoking in fixed risk factor
strata models versus the time-varying models that
we calibrated to the data. We then used the models
to consider the effect on life expectancy of hypothet-
ical smoking cessation interventions that caused
smokers to quit and prevented former smokers
from starting for either 1 year, 15 years, or 30 years.
Model projections were made with each of the 100
best-fitting calibrated parameter sets to reflect uncer-
tainty given the empirical data.

RESULTS

Calibration yielded close matches between mod-
eled and observed smoking prevalence for men in
all regions for all parameter sets. Figure 3 shows
modeled and observed current smoking prevalence
of men for all 12 regions (Figure 3A), prevalence of
long-term smoking (Figure 3B), and prevalence of
former smokers (Figure 3C). We observe that the con-
fidence intervals of the empirical estimates of smok-
ing prevalence are wider for older men than
for younger men because fewer individuals survive
to later ages. Even so, the calibrated model’s
output matches point estimates for all ages quite
closely and falls within their confidence bounds

for all of the model’s 100 best-fitting parameter
sets.

Calibration updates the range of input parameters
used from the initial distributions searched, consis-
tent with the empirical data and its uncertainty. Fig-
ure 4 shows the range of values for the calibrated
input parameters across the 100 best-fitting sets.
Notably, starting rates for those who have never
smoked before (Figure 4A) rise with earlier ages and
are generally more precisely calibrated prior to age
30 years when the pool of former smokers who may
otherwise restart is relatively small compared to
older age groups; the starting rates apply to a much
larger pool of people and are lower than the rates of
quitting and restarting (Figure 4B and 4C), which
are conditional on being in the subgroups of current
or former smokers. Likewise, because we allow for
both quitting and restarting smoking, shifts between
risk groups can compensate for one another. Thus,
it is particularly difficult to disentangle estimates of
age-specific quitting and restarting rates from empir-
ical prevalence data. Hence, the calibrated ranges for
these parameters are wider relative to those for the
age-specific starting rates. Even so, calibration allows
us to find reasonable estimates for these parameters
across the entire range of age groups that are consis-
tent with the empirical data (Figure 3).

To evaluate the improvement in life expectancy
estimates and resulting mortality projections due to
our time-varying risk factor model, we compared
life expectancy at age 30 years for rural men under 4
different scenarios: 1) all men are nonsmokers; 2) all
men are smokers; 3) men aged 30 years are divided
into smokers and never smokers, and these risk strata
remain constant for their remaining lifetimes (a fixed
risk factor model, similar to that in Figure 1B); and 4)
men can start smoking, stop smoking, and restart
smoking (our time-varying risk factor model). Preva-
lences of current smokers and former smokers at age
30 years are derived from our calibration targets for
the fixed risk strata model. For the time-varying
model, these prevalences are the same as they have
been calibrated to be. To ensure that the distribution
of smoking and former smoking durations is the
same, we started the model with a cohort of age 10
years and then computed the remaining life expec-
tancy for those alive at age 30 years. Mortality and
mortality relative risks from smoking are consistent
in all scenarios. The remaining life expectancy for
rural men who had never been smokers through age
30 years was 39.22 years (North), 36.36 years (Cen-
tral), 37.02 years (East), 33.95 years (Northeast),
36.83 years (West), and 36.77 years (South).
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Figure 3 Modeled and observed smoking prevalence among men in all regions of India. (A) Current smoking prevalence. (B) Long-term

smoking prevalence (�4 years). (C) Prevalence of former smokers. By geographic region and urbanicity, each panel shows the comparison

of the calibrated modeled outputs of age-specific prevalence (blue region is the uncertainty region for model predictions) and prevalences
and 95% confidence intervals (dashed black lines and gray regions are both) estimated from the 2009–2010 Indian Global Adult Tobacco

Survey (GATS).
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Figure 4 Range of values for the calibrated input parameters across the 100 best-fitting sets found through calibration for men in all

regions of India. (A) Values of pstart(a). (B) Values of pquit(a, d = 0). (C) Values of prestart(a, d = 0). Dark gray areas represent the 25th through
75th percentiles of values, and light gray areas represent the 2.5th through 97.5th percentiles of values.
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Figure 5A shows life expectancy losses from smok-
ing relative to these estimates of life expectancy for
nonsmokers. The largest losses, of nearly 6 years,

occur for a population of smokers who remain smok-
ers for the remainder of their lives. When some men
smoke and others do not, life expectancy losses will
fall between that of the lifetime smoker group and
zero. The use of a fixed risk factor model reduces
the estimated life expectancy by about 0.5 to 1.1 years
in the different regions (i.e., the loss attributable to
smoking assuming fixed risk strata). The use of our
time-varying risk factor model further reduces the
estimated life expectancy by about 0.9 to 1.4 years
(i.e., the loss attributable to smoking assuming that
individuals can switch between risk strata). Our
time-varying risk factor model estimates a lower life
expectancy than the fixed risk factor model because
our model accounts for the possibility that some
men who do not currently smoke may begin smoking
(or restart smoking), thus increasing their mortality,
and some men who do smoke may quit smoking,
but when they do, they will have a higher mortality
rate than men who never smoked, at least for a while.
By accounting for these possibilities, the time-
varying risk factor model generates life expectancy
estimates that have greater face validity given under-
lying real-world processes than does a fixed risk fac-
tor model.

Models that provide improved estimates of life
expectancy for time-varying risk factors can improve
estimates of the impacts of public health programs
and help decision makers form more informed deci-
sions about which programs to invest in. We illustrate
this by considering a highly stylized smoking cessa-
tion and prevention program targeted to rural men
that causes all smokers to quit at age 30 years and pre-
vents recidivism for 1, 15, or 30 years. Compared to no
such program, individuals receiving the intervention
gain 0.05 to 0.2 years of life expectancy if recidivism
occurs in 1 year and 1.5 to 2.0 years of life expectancy
if the program prevents recidivism for 30 years (Figure
5B). The total benefit is due both to the prevented years
of smoking and corresponding reduced mortality
risks; additionally, even after the program terminates,
the longer time spent as nonsmokers reduces the sub-
sequent risk of restarting. Our model accurately
reflects this additional benefit and shows the nonline-
arity of benefits in life expectancy as a function of how
long smokers are induced to quit. Thus, for example,
the benefit of the 15-year program is nearly that of
the 30-year program, showing that even if an interven-
tion’s direct effects attenuate over time, it can still have
appreciable indirect benefits.

We performed sensitivity analyses to examine how
uncertainty about the relative risk of death from
smoking may influence our results (Appendix

Figure 5 Life expectancy losses from smoking and gains from

a hypothetical smoking cessation intervention for populations of

rural men aged 30 years in regions of India relative to otherwise
similar populations of never smokers. (A) Life expectancy losses

for 3 groups: 1) smokers (all men are smokers and remain smokers

for life); 2) fixed risk strata (men aged 30 years are divided into

smokers and never smokers, and these risk strata remain constant
for their lifetimes); and 3) time-varying risk strata (men can start

smoking, stop smoking, and restart smoking). Each scenario is

shown in a different color bar from left to right for each geographic

region. Vertical bars show the uncertainty in life expectancy esti-
mates for our calibrated model (scenario 3) due to the uncertainty

in calibrated values of starting, quitting, and restarting smoking.

(B) Life expectancy losses as computed using our time-varying
risk strata model relative to an otherwise similar population of

never smokers under a hypothetical smoking cessation interven-

tion that also prevents restarting smoking for 1, 15, or 30 years. Col-

ored bars show the different intervention program durations, and
vertical bars show the uncertainty in life expectancy estimates

for our calibrated model due to the uncertainty in calibrated values

of starting, quitting, and restarting smoking.
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Figures 2 and 3). The Million Deaths Study provides
estimates of age- and sex-specific relative risks of
death from smoking used in our model. Those esti-
mates are based on a very large sample, which is
reported with 99% confidence intervals that are fairly
narrow and consistent with many other large longitu-
dinal studies performed worldwide. Without recali-
brating the model, we used relative risks from the
high and low ends of the 99% confidence intervals
and reran the model to examine 1) how our model
fits to the calibration targets changed and 2) how
our model predictions compared to a fixed risk strata
prediction of life expectancy loss due to smoking. We
find that the calibration fits remained within the con-
fidence intervals of our targets and were largely indis-
tinguishable from our main analysis. The only
noticeable differences, albeit within the confidence
intervals, were for individuals aged 65 years and
over, in whom higher relative risks caused our model
to underestimate the smoking prevalence and lower
relative risks caused it to overestimate prevalence
(Appendix Figure 2). While the level of life expec-
tancy loss due to smoking depended on higher versus
lower assumed relative risks, our model consistently
predicted greater losses due to smoking than a fixed
risk strata model (Appendix Figure 3).

DISCUSSION

Calibrating rates of change in exposures to risk fac-
tors using widely available, population-level, cross-
sectional data is a feasible and accurate approach to
modeling risk factor-dependent mortality in a popula-
tion. For the example of smoking in India, calibration
provided good estimates of the probabilities that men
start, quit, and restart smoking across all ages. Find-
ing good values for these parameters would not be
feasible via direct empirical analysis, given the lack
of longitudinal data. Moreover, the use of a model
with time-varying risk factors allowed us to obtain
more realistic estimates of life expectancy given
underlying real-world processes than would be
obtained from a model with fixed risk strata. Such
accuracy is important not only for forecasting the
chronic disease burden but also for evaluating the
potential effects of risk factor mitigation policies
(e.g., programs to prevent smoking initiation in youth
or smoking cessation programs).

Our analysis has several limitations. Our proposed
risk factor models employ discrete risk categories
(e.g., current smoker for 1 year, 2 years, etc.), but
risk is often continuous (e.g., number of pounds

overweight or amount of exposure to environmental
pollutants). When using discrete categories to repre-
sent continuous risk, a balance is required between
realism (enough risk categories) versus complexity
(too many risk categories). We did not model mortal-
ity risks as a function of total duration of exposure
(e.g., total of 10 lifetime years of smoking) nor of level
of exposure (e.g., cigarettes smoked per day). In prin-
ciple, it would be possible to construct a categoriza-
tion that captures both the duration of the current
episode of smoking and the duration of total exposure
and potentially the amount of exposure in the current
episode and over all episodes. Such a categorization
could improve the accuracy of risk prediction, but
at the expense of complexity. Our models could be
extended to capture such effects with additional cat-
egories but would eventually become intractable,
especially with the goal of identifying starting, quit-
ting, and restarting probabilities and embedding the
risk factor model within a larger chronic disease
model.

We did not model social network effects that may
affect risks. Changes in an individual’s risk factor
exposure may depend on the levels of risk factor
exposure in the population (e.g., an individual’s
chance of being obese may depend on the social
acceptability and prevalence of obesity among
friends or the entire population).51–53 In this case,
one might model risk factor exposure with transmis-
sion dynamics.53–56 Such a model would be more
complex than those we have considered, and would
require significantly more data, but could be useful
when network effects are important determinants of
risk.

Our calibration method uses a multitarget ordinary
least squares approach. Our objective function J
could be modified to incorporate the likelihood of
the model, providing true values given the empirical
data under assumptions about the true process that
generates the data.57 Additionally, our calibration
method may not optimally exploit the age-dependent
structure of the problem because it assumes the inde-
pendence of values of the same target at different
ages. Thus, our updating of parameters based on cal-
ibration may be less statistically efficient or consis-
tent than if the actual underlying likelihood
function were specified.

Incorporating the effects of risk factors into chronic
disease models is essential for accurately projecting
the burden of disease and estimating the potential
effects of mitigation policies. Our simplified
approach to modeling time-varying risk exposures,
along with calibration techniques to estimate key
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model parameters from commonly available cross-
sectional data, is a useful means of generating accu-
rate estimates of morbidity and mortality in a popula-
tion due to risk factors.
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