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as snow, along with mean decreases in late-season snow 
accumulation. However, internal variability does create 
uncertainty in the magnitude of hemispheric and regional 
snow changes, including uncertainty as large as 33 % of the 
baseline mean. In addition, within the 40-member ensem-
ble, many mid-latitude grid points exhibit at least one 
realization with a statistically significant positive trend in 
net snow accumulation, and at least one realization with a 
statistically significant negative trend. These results suggest 
that the direction of near-term snow accumulation change 
is robust at the regional scale, but that internal variability 
can influence the magnitude and direction of snow accumu-
lation changes at the local scale, even in areas that exhibit a 
high signal-to-noise ratio.

Keywords Snow · CCSM3 · Climate variability · Water 
availability · Global warming

1 Introduction

Winter snow accumulation provides a vital natural resource 
(Barnett et al. 2005; Viviroli et al. 2007; Mote 2006) with 
direct consequences for ecosystems (Rood et al. 2008; 
Tague and Peng 2013), food (Hatfield et al. 2011; Ashfaq 
et al. 2013), water (Barnett et al. 2008; Taylor 2013; Hay-
hoe et al. 2004) and energy (Siegfried et al. 2011). Snow 
accumulation and cover can also have important indirect 
impacts via atmospheric circulation (Fletcher et al. 2009; 
Alexander et al. 2010; Cohen et al. 2012; Sobolowski et 
al. 2010), soil moisture (Sheffield et al. 2004), and surface 
radiative balance (Qu and Hall 2007; Bony et al. 2006; 
Lawrence and Slater 2009), thereby contributing to spring 
and summer heat extremes (Diffenbaugh et al. 2005; Hall 
et al. 2008) and wildfires (Westerling et al. 2006).
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implementation of current adaptation responses are most 
relevant, the snow response is more uncertain, largely 
because of uncertainty in regional and local precipitation 
trends. We use a large (40-member) single-model ensem-
ble climate model experiment to examine the influence of 
precipitation variability on the direction and magnitude of 
near-term Northern Hemisphere snow trends. We find that 
near-term uncertainty in the sign of regional precipitation 
change does not cascade into uncertainty in the sign of 
regional snow accumulation change. Rather, temperature 
increases drive statistically robust consistency in the sign of 
future near-term snow accumulation trends, with all regions 
exhibiting reductions in the fraction of precipitation falling 
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Global warming is projected to cause widespread 
decreases in mid-latitude boreal cold-season snow accumu-
lation and snowfall by the end of the century (Diffenbaugh 
et al. 2012; Ashfaq et al. 2013; Räisänen 2007; Krasting et 
al. 2013; Pierce and Cayan 2013), potentially impacting 
snow-dependent systems (Barnett et al. 2005; Diffenbaugh 
and Field 2013). However, two essential and covarying 
influences on snow—precipitation and temperature—are 
subject to unforced climate system variability (Hawkins 
and Sutton 2010; Deser et al. 2012a; Meehl et al. 2009). 
Such internal variability creates substantial uncertainty in 
the sign and magnitude of decadal-scale trends in regional 
and local temperature and precipitation, particularly in the 
near-term decades (Deser et al. 2012a, b; Hawkins and Sut-
ton 2009, 2010). Internal variability could therefore also 
influence trends in snow accumulation that occur within the 
context of long-term global warming (Diffenbaugh et al. 
2012; Howat and Tulaczyk 2005; Scherrer and Appenzel-
ler 2006; Stewart 2009; Räisänen 2007; Hamlet et al. 2005; 
Mudryk et al. 2013). The confounding effects of internal 
variability pose particular complications for climate risk 
management (Kunreuther et al. 2013) over the near-term 
decades, when current adaptation decisions are most rel-
evant (Carter et al. 2007; Füssel 2007) but when the change 
in the mean is likely to be relatively small (Diffenbaugh et 
al. 2012; Krasting et al. 2013; Pierce and Cayan 2013).

The transient response of snow accumulation to increas-
ing greenhouse forcing has been explored in the multi-
GCM context (Diffenbaugh et al. 2012; Ashfaq et al. 2013; 
Krasting et al. 2013; Räisänen 2007; Pierce and Cayan 
2013). The CMIP5 ensemble shows robust declines in cold-
season snow accumulation and snowfall in most Northern 
Hemisphere (NH) regions by the end of the twenty-first 
century in the IPCC AR5 RCP8.5 and RCP4.5 forcing path-
ways, with Northeastern Eurasia showing robust increases 
(Diffenbaugh et al. 2012; Krasting et al. 2013). However, 
over the near-term decades, a number of snow-dependent 
regions exhibit projected snow accumulation changes that 
are small relative to the inter-annual variability, and not all 
members agree on the sign of change (Diffenbaugh et al. 
2012; Krasting et al. 2013), or show consistent responses 
among hydroclimatic variables (Pierce and Cayan 2013). 
For example, while surface air temperature signals emerge 
quickly in the CMIP5 RCP4.5 pathway, regional-scale 
snowfall signals take much longer, or never emerge at all, 
suggesting that snowfall may not exhibit robust regional-
scale changes in response to intermediate increases in radi-
ative forcing (Krasting et al. 2013). However, because the 
near-term decades are the timeframe over which regional 
climate adaptations are best positioned to offset future cli-
mate damages (Carter et al. 2007), quantification of irre-
ducible uncertainty in near-term snow accumulation change 
is critical for adaptive response.

Despite the studies that have examined snow in the 
CMIP5, it is unclear whether the ensemble’s uncertainty 
in signal emergence, particularly in the near-term, is due to 
internal variability, structural differences among the models, 
or a combination of the two (Ashfaq et al. 2013; Rupp et 
al. 2013; Diffenbaugh et al. 2012). Distinguishing the role 
of internal variability—and the associated irreducible uncer-
tainty—requires a large number of integrations of the same 
model in a single forcing pathway (Deser et al. 2012a), 
which has not been available in CMIP. Therefore, it remains 
critical to examine whether internal variability alone is suf-
ficient to create uncertainty in the direction of near-term 
regional and sub-regional snow accumulation trends.

Such an analysis requires a large single-model climate 
model ensemble. In this study, we examine the influence of 
temperature and precipitation variability on the direction 
and magnitude of NH snow accumulation trends using a 
unique 40-member ensemble of a single atmosphere–ocean 
general circulation model (GCM) (Deser et al. 2012a) (see 
“Methods”). The 40 integrations are given the same bound-
ary conditions and atmospheric constituent concentrations, 
with each integration initialized using only minor differ-
ences in the atmospheric state (Deser et al. 2012a). The 
spread within the ensemble thus represents a calculation of 
the irreducible uncertainty arising from atmospheric noise 
in one forcing trajectory given one initial ocean state. Such 
an experiment provides the opportunity for critical insight 
into the range of outcomes that the natural world could 
manifest in response to near-term global warming (Deser 
et al. 2012b).

2  Methods

2.1  Climate model configuration

CCSM3.0 is a general circulation model with coupled 
atmosphere, ocean, land, and sea-ice components. In this 
experiment, called the “twenty-first century CCSM3.0 
Large Ensemble Project” the atmospheric component is 
run with T42 spectral truncation (~2.8° resolution in the 
horizontal). The model is forced with the IPCC SRES A1B 
greenhouse-gas emissions trajectory from the IPCC AR4, in 
which atmospheric CO2 concentrations increase from 380 
to 570 ppm over the 2000–2060 integration (see Meehl et 
al. 2006; Deser et al. 2012a). At the end of the twenty-first 
century, the likely global warming in the A1B scenario falls 
between RCP6.0 and RCP8.5, the two highest scenarios 
of CMIP5 (Rogelj et al. 2012). During the first half of the 
twenty-first century (over which the CCSM3 ensemble is 
run), A1B has rates of emissions slightly higher than the 
RCP8.5 until 2030, at which point the rates slow through 
2050 (Peters et al. 2013). The net effect of A1B is a mean 
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global warming level similar to the RCP8.5 over the first 
60 years of the twenty-first century (~2 °C relative to the 
late-twentieth century) (Knutti and Sedláček 2012), which 
is the time period of the CCSM3 integrations analyzed here.

Snowfall is parameterized in CCSM3 as a fraction of 
total precipitation as a linear function of grid-volume tem-
perature in the model’s atmospheric component, CAM3 
(Collins et al. 2004). The model’s land component, CLM, 
determines the surface accumulation of snowfall through 
a combination of thermodynamic and water-balance mod-
eling, influenced by snow age, water content, and melt, 
which influence and are influenced by ground temperature 
and albedo (Oleson et al. 2004).

The 40-member ensemble is initialized from a single 
CCSM3 realization of the twentieth century (“20C”) his-
torical climate. The ocean, land, and sea-ice components 
for all 40 members were initialized using the same fields 
from January 1, 2000 in the single 20C integration. How-
ever, the atmospheric initial conditions were initialized 
with fields from 40 different days during December 1999–
January 2000 from that same 20C integration (Deser et al. 
2012a). The spread among the ensemble can therefore be 
interpreted as CCSM3’s representation of internal climate 
variability induced by atmospheric noise, within a single 
forcing pathway. This intra-model spread is distinct from 
the intra-model spread seen in the CMIP3 or CMIP5 pro-
jections, which results from uncertainty in the initial state 
of the atmosphere, ocean, and sea ice. It should be stressed 
that because the CCSM3 intra-model spread only captures 
the variability induced by the atmospheric initial condi-
tions, the intra-model model spread would be different (and 
perhaps larger) if the 40 runs were initialized from differ-
ing phases of low-frequency variability in the ocean or sea-
ice states, as in the single-model ensembles within CMIP. 
Additional large-ensemble experiments will be necessary 
to quantify the extent to which uncertainty in model struc-
ture, level of forcing, and initial state of the ocean and sea-
ice influence the uncertainty in snow trends.

We use the 1970–1999 period of the single CCSM3 20C 
realization from which all members were initialized as the 
baseline against which all 40 twenty-first century realiza-
tions are compared. We define an individual month’s ‘net 
snow accumulation’ as the monthly-mean value of the 
IPCC variable ‘surface snow amount, (snw)’ (kg m−2, or 
“snow water equivalent”). The March value, which we ana-
lyze here, is a measure of the cold-season net accumulated 
snow remaining in March and represents the total accumu-
lated snowfall less the total snowmelt (and ablation) over 
the cold-season (Mote et al. 2005; Kapnick and Hall 2011; 
Bohr and Aguado 2001). Given the potential for high-lati-
tude and high-elevation areas to exhibit snow seasons that 
last beyond March, we also present net snow accumula-
tion trends for April, May, and June. Like the March value, 

these monthly values represent the total accumulated snow-
fall less the total snowmelt (and ablation) over the cold-sea-
son up through that month.

For other variables, we define ‘cold-season average’ 
as the mean of November–March (NDJFM). Data from 
December 2057 in run 39 are removed from the analysis, 
as all values were coded as ‘0’ on the Earth System Grid 
(www.earthsystemgrid.org; the database from which the 
CCSM3 data were downloaded). As a result, for the year 
2057 of run 39, the seasonal NDJFM average is calculated 
using the values from November, January, February and 
March. This calculation does not influence the snow accu-
mulation results, but rather only the variables calculated at 
the seasonal scale (NDJFM). Although this recoding does 
influence the mean seasonal values calculated in the year 
2057 of the single run, it avoids removing the 2057 value 
from the time series, which, given the placement of 2057 
near the end of the 2000–2060 time series, could bias the 
calculation of the linear trend.

2.2  Model validation

Given that the focus of our analysis is the interaction 
among temperature, precipitation and snow accumulation, 
we seek to compare the 20C simulation of historical cli-
mate to a single observational dataset that provides physi-
cal consistency among the three variables. We therefore 
employ reanalysis output from version 2.0 of the Global 
Land Data Assimilation System (GLDAS-2) (Rodell and 
Houser 2004). The GLDAS-2 assimilates global meteoro-
logical observations and simulates observed land surface 
processes from 1948 to 2010. Land surface variables are 
available at 0.25° horizontal resolution.

Following Diffenbaugh et al. (2012), we compare the 
geographic extent of snow accumulation in the GLDAS-2 
and CCSM3 by identifying the grid points with any snow 
accumulation in any month during the baseline period 
(1970–1999). In addition, we compare the relationship 
between March net snow accumulation and cold-season 
(NDJFM) temperature and precipitation for the 9 regions 
analyzed (as well as the Northern Hemisphere). We first 
calculate the area-weighted mean and interannual stand-
ard deviation in CCSM3 and GLDAS-2 for the baseline. 
We then calculate the difference between the respective 
CCSM3 and GLDAS-2 values, and divide the difference by 
the GLDAS-2 mean to yield the CCSM3 bias as a percent 
difference from GLDAS.

2.3  Calculation of hemispheric, regional, and grid point 
linear trends

We use the time series of monthly-mean values to esti-
mate autocorrelation-corrected (generalized least squares) 

http://www.earthsystemgrid.org
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linear time trends in monthly and cold-season average for 
five variables: (1) March net snow accumulation (‘snw’, 
kg m−2), (2) cold-season near surface temperature (‘tas’, 
°C), (3) cold-season precipitation (‘pr’, kg m−2 s−1), (4) 
cold-season snowfall flux (‘prsn’, kg m−2 s−1), and (5) 
cold-season snowfall-to-precipitation ratio (the trends of 
which we present as a percentage of the baseline mean 
ratio). We estimate linear trends in all 40 ensemble mem-
bers for these variables at the hemispheric, regional, and 
grid point (“sub-regional”) scales. We also calculate trends 
for net snow accumulation, mean monthly snowfall, and 
the mean monthly snowfall-to-precipitation ratio for the 
months of March, April, May, and June to examine snow 
trends at higher latitudes where the snow season may be 
longer.

We estimate Northern Hemisphere (20 N to 90 N latitude) 
and regional (see Table 1) area-weighted averages over land 
and fit linear trends to those averages for each realization for 
the 2000–2060 period. We also fit individual grid point linear 
trends for each realization for the 2000–2060 period.

Trends in precipitation, snow accumulation, and snow-
fall are expressed as percentages of the seasonal (pre-
cipitation and snowfall) or monthly (snow accumulation) 
baseline value. We use the entire 2000–2060 integration 
period to calculate the trend coefficients, and then multi-
ply the resultant coefficient by 50 years. Thus the trends 
can be read as ‘percent change per 50 years’. At all scales, 
each time series is fit with an ordinary least squares (OLS) 
regression estimate as a function of time. Because auto-
correlation can lead to an overestimate of statistical sig-
nificance in linear trends (Santer et al. 2000), we test the 
residuals off this OLS coefficient for autocorrelation. If 
autocorrelation is significant (5 % level, assuming normal-
ity of the autocorrelation statistic), we fit a generalized least 
squares (GLS) model estimated using an autoregressive 
moving average process of order p = 1 or p = 2, based on 
the data’s covariance structure (estimated from the partial 
autocorrelation function of the data). Fitting a GLS allows 
us to estimate the significance of the trend correcting for 

autocorrelation of the residuals. For significance of individ-
ual trends, we test the time coefficient based on the stand-
ard Student’s t score given a preselected α-level: Pr(>|t|) 
<α, using α = 0.05 or α = 0.01.

Ensemble trends are calculated as the average of the 
40 single-realization trends. Ensemble trend significance 
(robustness) is calculated as the signal-to-noise ratio, S/N, 
of the ensemble average trend to the standard deviation 
(SD) of the 40 individual trends. For the regional-scale, 
ensemble trend values are calculated as the trend fitted to 
the ensemble average area-weighted time series to allow 
estimation of a p value. We compare this regional-scale 
ensemble trend calculated to the average of all 40 regional-
scale trends, and find that they are the same for all regions. 
For regional-scale trends, we present two measures of sta-
tistical significance: first, as a typical significance test of a 
time trend, and second, as an ensemble S/N (Table 2). The 
counts of statistically significant individual regional-scale 
trends and their direction are presented in Table 3.

Note that the regions analyzed have different numbers 
of grid points over which the climate signal and noise 
are compared. While this allows for evaluation of signal 
emergence across variables within each region, differing 
region sizes can influence the S/N, making comparisons 
of S/N across regions difficult. We therefore only use the 
S/N to compare variables within regions, rather than across 
regions. At the grid point scale, S/N can be compared.

For the nonlinear regression, we use the visually-
weighted regression method, which uses color-saturation 
and contrast to represent regression estimate uncertainty 
(Hsiang 2013). We resample the times series of area-
weighted average over-land Northern Hemisphere data, 
estimating a new nonlinear regression estimate with each 
sample. We use the entire series to weight each local 
regression estimate (using the ‘loess’ function in the sta-
tistical software R, given the smoothing parameter α = 1). 
Each regression estimate is plotted with the same degree of 
transparency; as more estimates overlap, a region of higher 
opacity emerges representing the 95 % confidence interval 

Table 1  Regional domains 
and number of grid points used 
in the analysis based on T42 
spectral truncation

Region Latitude (degrees north) Longitude (degrees east) No of grid points

Northern Hemisphere 20–90 0–360 3,200

(1) Alaska 51.6257–73.9475 191.25–255.938 216

(2) Arctic Canada 51.6257–73.9475 255.938–300.938 135

(3) W. US 29.3014–51.6257 230.625–255.938 63

(4) E. US 34.8825–51.6257 255.938–300.938 75

(5) N. Europe 46.0447–71.1578 0–30.9375 99

(6) N.E. Europe 46.0447–71.1578 30.9375–61.875 96

(7) N.E. Asia 46.0447–71.1578 61.875–182.812 344

(8) Central Asia 26.5108–46.0447 39.375–64.6875 80

(9) Greater Himalaya 29.3014–46.0447 64.6875–106.875 105
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around the median regression estimate, whose location is 
revealed as a contrasted white line (Hsiang 2013).

2.4  Calculation of regional multi-decadal changes

We calculate the changes in the 30-year area-weighted 
average snow accumulation, snowfall, precipitation, snow-
fall-to-precipitation ratio, and temperature for each reali-
zation over nine mid- and high-latitude regions (Table 1, 
defined in Diffenbaugh et al. 2012). These changes are 
calculated as the difference between the 2031–2060 mean 
in each realization and the 1970–1999 baseline in the sin-
gle 20C integration. The ensemble mean and standard 

deviation are both expressed as percentages of the baseline 
mean, save for temperature, which is presented in °C.

2.5  Calculation of partial correlations

For each grid point, we estimate the Spearman’s rank non-
parametric partial correlation of March net snow accumu-
lation with cold-season precipitation and with cold-season 
temperature, controlling for the covarying relationship 
between temperature and precipitation. The Spearman’s 
rank makes no assumptions about the data sample’s under-
lying distribution. We calculate the statistical significance 
using the standard assumption that the Spearman’s ρ 

Table 2  Ensemble 50-year trends for net snow accumulation, and seasonal temperature, precipitation, snowfall, and snowfall-to-precipitation 
ratio estimated from 2000 to 2060

All trends are expressed as percentages of the baseline (1970–1999) mean, save for temperature, which is in Celsius. We show two measures of 
statistical significance. The first number in each row is the ensemble linear trend with an asterisk (*) next to those trends that are statistically sig-
nificant at the 1 % level. The number in parentheses indicates the signal-to-noise ratio (S/N) of that ensemble average trend relative to all trends 
within the ensemble—a number greater than one indicates an ensemble trend greater than ± standard deviation of the ensemble variability. Note 
that comparison of the S/N across regions may be influenced by the varying sizes of the regions (see “Methods”). Bolded results are those that 
do not show significance in at least one of the two significance tests

Region Net snow trend [% 
50 years−1] (S/N)

NDJFM temperature 
trend [°C 50 years−1] 
(S/N)

NDJFM precipitation 
trend [% 50 years−1] 
(S/N)

NDJFM snowfall trend [% 
50 years−1] (S/N)

NDJFM ratio trend 
[% 50 years−1] 
(S/N)

(1) Alaska −21.27* (3.38) 3.35* (4.40) 13.82* (4.29) −5.49* (1.23) −14.57* (4.60)

(2) Arctic Canada −3.74* (1.69) 4.15* (8.05) 15.91* (5.05) 6.32* (2.29) −6.32* (5.95)

(3) W. US −44.93* (2.60) 1.65* (3.72) −1.70 (0.37) −20.64* (3.60) −18.25* (3.23)

(4) E. US −21.98* (2.27) 1.96* (4.17) 6.08* (1.49) −11.98* (2.42) −15.60* (3.39)

(5) N. Europe −29.72* (1.89) 1.84* (3.88) 4.49* (1.84) −29.02* (3.30) −30.00* (3.62)

(6) N.E. Europe −22.82* (4.83) 2.87* (4.12) 9.35* (3.71) −14.32* (5.16) −20.57* (6.49)

(7) N.E. Asia 0.74 (0.40) 3.57* (6.12) 16.23* (6.36) 8.64* (4.12) −5.81* (7.22)

(8) Central Asia −11.98* (0.62) 1.65* (5.73) −4.68* (0.96) −35.99* (3.55) −36.02* (3.53)

(9) Greater Himalaya −10.96* (1.43) 2.11* (6.09) 3.74* (1.02) −7.10* (1.90) −10.29* (6.97)

Table 3  Number of realizations (out of 40) with statistically significant linear trends (autocorrelation-corrected) and their direction (positive or 
negative) for five variables given area-weighted averages in the nine regions, estimated from 2000 to 2060

‘Ratio’ refers to the ratio of cold-season (NDJFM) snowfall to cold-season precipitation. In Northeastern Asia, one run shows a significant posi-
tive trend, one run, a significant negative trend (+/−)

Region Net snow 
(p < 0.05)

NDJFM temperature 
(p < 0.01)

NDJFM precipitation 
(p < 0.05)

NDJFM snowfall 
(p < 0.05)

NDJFM ratio 
(p < 0.05)

(1) Alaska 39 (−) 39 (+) 39 (+) 11 (−) 40 (−)

(2) Arctic Canada 6 (−) 40 (+) 40 (+) 22 (+) 40 (−)

(3) W. US 26 (−) 38 (+) 2 (−) 37 (−) 32 (−)

(4) E. US 19 (−) 38 (+) 10 (+) 24 (−) 36 (−)

(5) N. Europe 16 (−) 39 (+) 22 (+) 38 (−) 39 (−)

(6) N.E. Europe 39 (−) 38 (+) 35 (+) 39 (−) 40 (−)

(7) N.E. Asia 2 (+/–) 40 (+) 40 (+) 37 (+) 40 (−)

(8) Central Asia 4 (−) 40 (+) 2 (−) 36 (−) 38 (−)

(9) Greater Himalaya 19 (−) 40 (+) 11 (+) 23 (−) 40 (−)
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statistic approximates the t-distribution when n > 10 under 
the null hypothesis that the correlation is zero.

3  Results

3.1  Model validation

We assess CCSM3’s temperature, precipitation, and 
snow accumulation biases against GLDAS-2 (Fig. 1). 
Snow accumulates over a similar geographic extent in the 
CCSM3 and GLDAS-2 (Fig. 1a, b). There is a negative 
bias in both the mean (Fig. 1c, number 10) and inter-annual 

variability (Fig. 1d, number 10) of NH-mean March snow 
accumulation. There is also considerable inter-regional 
spread in the magnitude and direction of biases for the 
nine regions within the NH. Alaska, Arctic Canada, the 
Western US, Northeastern Europe, Northeastern Asia and 
the Greater Himalaya (regions 1, 2, 3, 6, 7, and 9) exhibit 
positive March snow accumulation biases (Fig. 1c). Of 
these, Alaska, Arctic Canada, Northeastern Europe, and 
Northeastern Asia (regions 1, 2, 6, and 7) also have positive 
temperature and precipitation biases. Positive snow accu-
mulation, temperature, and precipitation biases over these 
regions suggest that even with warmer-than-observed tem-
peratures, these regions remain below freezing (Fig. 1c). In 

Fig. 1  CCSM3 model valida-
tion. Areas with (dark blue) and 
without (grey) a monthly snow 
accumulation amount of at 
least 0.01 kg m−2 in any month 
between the period of 1970–
1999 in the GLDAS-2 reanaly-
sis (a) and the CCSM3 model 
(b). Grey grid points in (a) 
are inland bodies of water not 
captured by the CCSM3. The 
bias in the mean (c) and interan-
nual variability (1σ) (d) of 
seasonal temperature (y-axis), 
seasonal precipitation (x-axis), 
and March snow accumulation 
(color scale) in the CCSM3 
for the 9 regions analyzed plus 
the Northern Hemisphere for 
1970–1999 (see inset map and 
Table 1). All values (except 
for the y-axis in (c), which is a 
simple difference) are expressed 
as the percent difference from 
the GLDAS climatology. The 
sign of the value expresses the 
direction of the bias. The color 
scale for snow accumulation 
represents mean (c) and SD (d) 
values. Values falling on the 
origin represent agreement with 
the GLDAS reanalysis

GLDAS-2 CCSM3.0
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contrast, the positive temperature bias in Northern Europe 
may be sufficient to drive the negative snow accumulation 
bias exhibited over that region (Fig. 1c). The inter-annual 
variability in temperature and precipitation is larger-than-
observed in Alaska, the Western US, and Central Asia 
(regions 1, 3 and 9), leading to larger-than-observed inter-
annual variability in net snow accumulation (Fig. 1d).

Regional-scale biases in CCSM3-simulated surface 
air temperature (John and Soden 2007) could account for 
some of the CCSM3 snow bias (Krasting et al. 2013). For 
example, the cold biases in the Western US and the Greater 
Himalaya (regions 3 and 9) are associated with large posi-
tive precipitation and net snow accumulation biases, sug-
gesting greater accumulation of snowfall. A cold bias 
could also result in an attenuated seasonal and inter-sea-
sonal snow albedo feedback (SAF) (Hall and Qu 2006). 
A weaker-than-observed SAF would reduce cold-season 
snowmelt, accumulating more snow, which would affect 
the response of regional temperature, circulation, snow 
accumulation, and snowmelt to global warming (Rauscher 
et al. 2008; Fletcher et al. 2009; Hall et al. 2008). The size 
of the snow accumulation bias in CCSM3 is similar in mag-
nitude to the biases seen in CMIP3 and CMIP5 (Roesch 
2006; Diffenbaugh et al. 2012). While our analyses assume 
that the precision of the ensemble (the spread due to inter-
nal variability) is not influenced by these model biases, this 
assumption requires further testing (e.g., as in Hall and Qu 
2006).

3.2  Hemispheric-scale snow response

At the hemispheric scale, all 40 realizations exhibit posi-
tive trends in cold-season temperature, positive trends in 
cold-season precipitation, and negative trends in net accu-
mulated cold-season snow (Fig. 2c). Although these results 
suggest that increasing temperature overcomes increasing 
precipitation to create net decreases in accumulated snow, 
there is substantial variation in the magnitude and spatial 
pattern of the trends within the ensemble (Fig. 2b). Because 
the response to increasing forcing tends to be most robust 
at larger spatial scales and over longer timescales (Hawk-
ins and Sutton 2009; Cane 2010; Meehl et al. 2009), the 
ensemble might be expected to show climatological con-
vergence at the hemispheric scale. This is because of the 
long timescale of a half-century of integration and the 
large geographic area over which the noise induced by the 
atmospheric initial conditions is being averaged. However, 
50-year trends in net accumulated NH snow range between 
−2 and −12 kg m−2 (Fig. 2c), with the realizations exhibit-
ing the maximum and minimum changes differing by up to 
14 % of the baseline mean (Fig. 2a). This range is larger at 
the grid point scale, where trend differences between these 
two realizations reach up to 280 % of baseline mean in the 

mid-latitudes (Fig. 2b). In addition, the realizations that 
show the largest hemispheric-scale declines in net snow 
accumulation do not exhibit the largest hemispheric-scale 
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Fig. 2  Spread in snow accumulation, temperature, and precipitation 
trends. a Simulated 2000–2060 trends in net cold-season snow accu-
mulation (calculated as March snow water equivalent). We show the 
realization with the maximum (open blue circles) and the minimum 
(open red triangles) Northern-Hemisphere area-weighted linear trend, 
along with the annual mean of the 40-member ensemble (grey plus 
signs). Fitted to each of the three series is a locally weighted (non-
linear) regression (see “Methods”). The shading (blue for the maxi-
mum trend, red for the minimum, and grey for the ensemble mean) 
represents the 95 % confidence interval around the median nonlinear 
regression estimate. b The map of the difference between the maxi-
mum and minimum linear 50-year snow accumulation trends among 
the runs plotted in a, where the trends are expressed as a percentage 
of the baseline net mean snow accumulation. Grey indicates regions 
with no snow accumulation in the baseline. c Histograms of the 
2000–2060 area-weighted Northern Hemisphere linear trends cal-
culated from the 40 ensemble members for net snow accumulation 
(snw), November–March (NDJFM) surface air temperature (tas), 
and NDJFM precipitation (pr). Within each histogram we mark the 
respective trends for the realizations that exhibit the maximum, mini-
mum, and median snw, tas, and pr linear trends among the ensemble. 
We report the number of realizations showing statistically significant 
trends below the histograms
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increases in temperature or decreases in precipitation 
(Fig. 2c). This hemispheric-scale discrepancy implies that 
spatial variability could play an important role in determin-
ing the variability in hemispheric-scale snow changes.

3.3  Regional scale snow response

Seven of the nine regions analyzed have statistically sig-
nificant negative ensemble mean snow trends, with regional 
snow declines of 3–44 % per 50 years (Fig. 3b; Table 2). 
In addition, only Northeastern Asia exhibits both positive 
and negative snow trends that are statistically significant 
(Table 3). While temperature trends are consistently posi-
tive across all ensemble members and regions, the magni-
tude varies by a factor of 5 between the different regions. In 
addition, the magnitude of regional temperature trends can 
vary substantially across the realizations, including a range 
of up to 3 °C across the realizations over Arctic Canada 
(Fig. 3a).

In contrast to the consistency of direction in the tem-
perature response, the intra-ensemble variation spans posi-
tive and negative precipitation trends in 5 of the 9 regions 
(Fig. 3). Such variability in regional-scale precipitation 
trends can be large relative to a region’s ensemble mean 
trend. For example, the Western US and Central Asia 
(regions 3 and 8) have intra-ensemble variation equivalent 
to nearly 20 % of the baseline mean (Fig. 3), while their 
50-year ensemble mean trends are between −1 and −5 % 
(Table 2).

Analysis of the multi-decadal changes (Fig. 4) illustrates 
the relationship between this precipitation uncertainty and 
regional snow changes. All realizations show declines in the 
fraction of precipitation falling as snowfall for all 9 regions 
(Fig. 4e). In addition, all realizations exhibit decreases in 
multi-decadal mean net snow accumulation for 7 of the 9 
regions (Fig. 4a). Only Arctic Canada and Northeastern 
Asia (regions 2 and 7) show any realizations that exhibit 
increases in multi-decadal mean net snow accumulation, 
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Fig. 3  Regional temperature, snow accumulation, precipitation, 
snowfall, and snowfall-to-precipitation ratio trends. For each of the 
nine regions analyzed, we show the 50-year autocorrelation-corrected 
linear trends of a NDJFM surface temperature, b March net snow 
accumulation, c NDJFM precipitation, d NDJFM snowfall, and e 
NDJFM snow-to-precipitation ratio estimated from 2000–2060. 
Net snow accumulation, precipitation, snowfall, and snowfall-to-
precipitation ratio trends are expressed as percentages of their base-
line means. The boxplots show the median (heavy black line) of the 
ensemble within a 25th to 75th percentile box, with whiskers extend-
ing to the first sample point that is less than 1.5 times the interquartile 
range. Realizations beyond this range are represented as open circles
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Fig. 4  Regional changes in net snow accumulation, temperature, 
precipitation, and snowfall. Regional March net snow accumulation 
multi-decadal changes (2031–2060 minus 1970–1999) as a function 
of changes in cold-season (NDJFM) a temperature, b precipitation, 
c snowfall, and d snowfall-to-precipitation ratio for nine regions (see 
inset map and Table 1). We also show the change in snowfall-to-pre-
cipitation ratio as a function of changes in precipitation (e). The con-

fidence intervals around the area-weighted ensemble-mean changes 
represent ± one standard deviation of the ensemble variability. Snow, 
precipitation, and snowfall are expressed as percentages of their base-
line mean. Open circles and x’s represent the most extreme ensemble 
member for the variable on the y and x-axes, respectively. For refer-
ence, the line of slope 1 through the origin is shown as a dotted line 
in b, c, d, and e
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with cold-season precipitation and snowfall increasing in 
all realizations over both regions (Fig. 4b, c). In contrast, 
all ensemble members show increases in mean cold-season 
precipitation but decreases in mean net snow accumula-
tion over Alaska, the Eastern US, and Northern Europe 
(Fig. 4b). The ensemble spans both positive and negative 
changes in precipitation over the Western US, Central Asia, 
and the Greater Himalayas (regions 3, 8, and 9). However, 
all realizations exhibit declines in net snow accumulation, 
snowfall, and the fraction of precipitation falling as snow-
fall over all three of those regions (Fig. 4c, d, e). This sug-
gests that the uncertainty in the change in regional-scale 
precipitation does not dictate uncertainty in the change in 
net snow accumulation.

3.4  Sub-regional-scale snow response

Many sub-regional areas show consistent trends in 
March net snow accumulation across the 40-member 
ensemble (Fig. 5a). For example, western North America, 
Central Canada, and Northern Europe and Eastern Europe 
all show robust decreases of 30–50 % per 50 years. Like-
wise, portions of the high-latitude Asian interior show 
moderate but robust March increases of ~10 % or more per 
50 years.

Seasonal surface temperature trends are positive eve-
rywhere, with nearly all ensemble members, grid points, 
and regions exhibiting a robust signal (Fig. 5c). In general, 
high-latitudes and continental interiors warm more rapidly 

Fig. 5  Ensemble-mean snow 
accumulation, temperature, 
precipitation, and snowfall trend 
maps. Color contours show the 
40-member ensemble mean 
percent change per 50 years 
(linear trend) in a March net 
snow accumulation, cold-season 
b precipitation, c surface air 
temperature, d snowfall, and e 
snowfall-to-precipitation ratio 
estimated from 2000 to 2060. 
Snow accumulation, precipita-
tion, and snowfall trends are 
expressed as percentages of 
their respective baseline means. 
Grey indicates regions with no 
net snow accumulation in the 
baseline. Stippling indicates the 
significance of the ensemble-
mean trend, with white (black) 
plus signs indicating an ensem-
ble average trend greater than 
two (one) times the SD of all 40 
individual trends
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than lower-latitude maritime regions. Precipitation shows 
strong agreement in the high-latitudes, with statistically 
significant increases of up to 20 % per 50 years (Fig. 5b). 
The ensemble exhibits considerably less agreement in pre-
cipitation trends over the mid-latitudes, with most mid-lat-
itude sub-regions in North America and Europe failing to 
show S/N ratios greater than one.

As was seen at the regional scale, many areas exhibit 
greater uncertainty in precipitation trends than in tempera-
ture and snow accumulation trends (Fig. 3; Table 2). For 
example, in the Western US, where up to 70 % of river dis-
charge is from snowpack (Howat and Tulaczyk 2005), the 
ensemble mean precipitation trend is −1.7 % over 50 years 
(not statistically significant), with a S/N of 0.37 (Table 2). 
However, net snow accumulation trends are approximately 
−40 % (significant at the 1 % level), and have a S/N of 
greater than 2. Other regions for which snow accumula-
tion trends are more robust than precipitation trends include 
Northern Europe, Northeastern Europe, the Eastern US, 
and the Greater Himalaya (Table 2). The presence of robust 
declines in March net snow accumulation within the con-
text of uncertain trends in cold-season precipitation suggests 
that cold-season warming drives snow trends in many areas. 
(It should be noted that at the regional-scale, differences 
in area-weighted S/N reflect not only difference in climate 
variability, but also the size of the regions; see “Methods”).

We test the relative influence of temperature and precipita-
tion on the pattern of snow trends by estimating their partial 
correlation with March net snow accumulation in the base-
line and future periods (Fig. 6). The partial correlation reveals 
clear patterns of precipitation and temperature influence on 
net snow accumulation during the baseline period (Fig. 6a, c, 
left column). For example, net snow accumulation variability 
over cold high-latitude areas tends to have a stronger relation-
ship with precipitation variability (Fig. 6c), while its variabil-
ity over warmer mid-latitude areas tends to have a stronger 
relationship with temperature variability (Fig. 6a). The most 
prominent exceptions are areas in the mid-latitude continen-
tal interiors that share a stronger correlation with precipita-
tion (Fig. 6c), and high-latitude maritime areas that share a 
stronger correlation with temperature (Fig. 6a).

The partial correlation also reveals a general intensifi-
cation of temperature influence on variability in net snow 
accumulation during the future period (Fig. 6b, d, right col-
umn). This intensification has three attributes: (1) increas-
ing strength of the negative partial correlation with tem-
perature in the mid-latitudes; (2) increasing strength of the 
positive partial correlation with temperature in the high-
latitudes of Northeastern Asia; and (3) transition of many 
high-latitude areas from little partial correlation with tem-
perature in the baseline period to negative partial correla-
tion with temperature in the future period. The high ensem-
ble agreement in the spatial pattern of future correlations 

(Fig. 6e) suggests that internal variability does not influ-
ence whether a grid point is more correlated with tempera-
ture or precipitation.

The positive (but not statistically significant) correlation 
between high-latitude continental Asian interior tempera-
ture and snow accumulation is a notable departure from the 
inverse relationship between the two elsewhere (Fig. 6b). 
However, its correlation structure mimics the spatial pat-
tern of ensemble mean net snow accumulation trends 
shown in Fig. 5a. This positive snow-temperature correla-
tion structure over Siberia (Fig. 6b) is also associated with 
highly significant positive snow-precipitation correlations 
(Fig. 6d) and arises from at least three factors: (1) Despite 
large increases, regional cold-season temperatures remain 
cold enough to support snowfall and snow accumulation; 
(2) the warming advects greater Arctic moisture into the 
region (Deser et al. 2010); and (3) the high-latitude cold-
season warming is confined to the boundary layer due to 
sea-ice loss, reducing the prevailing inversion, and induc-
ing greater atmospheric instability (Deser et al. 2010). In 
addition, it should be noted that the high-latitude areas 
show decreases in net snow accumulation later in the year 
(Fig. 7a–d). Such late-season high-latitude decreases sug-
gest a systematic decrease in mean net snow accumulation 
during the latter part of the local snow season, which gen-
erally occurs later in the year at higher latitudes and higher 
elevations (see “Discussion”).

4  Discussion

4.1  Influence of temperature and precipitation variability 
on snow trends

Decline of Northern Hemisphere snow accumulation and 
snow cover is seen in observations (Hartmann et al. 2013), 
and is a robust long-term response to increasing green-
house forcing over most NH regions in the CMIP5 ensem-
ble (Diffenbaugh et al. 2012). This response holds even 
at lower forcing levels, such as in RCP4.5 (Krasting et al. 
2013). However, the influence of internal variability on the 
direction and magnitude of near-term snow accumulation 
trends is less clear, particularly at the sub-regional spatial 
scales that could be most useful for adaptation planning. 
Quantifying this near-term irreducible uncertainty in snow 
changes is a critical component of climate risk manage-
ment (Kunreuther et al. 2013), and requires an experimen-
tal design that to-date has been unavailable in CMIP.

Although we find that the direction of the regional-
scale snow response is consistent across the large single-
model ensemble, the magnitude can vary by 3–33 % 
between individual realizations, depending on the region 
(Table 4). Indeed, within the 40-member ensemble, many 
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mid-latitude grid points exhibit at least one realization with 
a statistically significant positive trend in March net snow 
accumulation, and at least one realization with a statisti-
cally significant negative trend in March net snow accumu-
lation (Fig. 8a, b). Although the regional-scale ensemble 
mean response is robust (e.g., Figs. 3b, 4a), the range of 
possible outcomes in the individual realizations shows that 
natural variability creates uncertainty in the magnitude—
and possibly direction—of sub-regional-scale snow trends 

over the near-term decades, when adaptation is thought to 
have the greatest marginal benefits (Carter et al. 2007). 

The trends in March net snow accumulation appear to 
be driven primarily by trends in cold-season tempera-
ture, which exhibit both less uncertainty than precipita-
tion trends and greater agreement with the sign of the 
snow trends. Despite regional variability in the tempera-
ture response across the ensemble (Figs. 3a, 4a), nearly 
all ensemble members, grid points, and regions exhibit a 
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Fig. 6  Partial correlations with accumulated snow. The Spearman’s 
rank partial correlation coefficients for March net snow accumulation 
with seasonal (NDJFM) average temperature (a, b) and NDJFM pre-
cipitation (c, d) in the baseline and future integrations (left and right 
columns, respectively). For the baseline period (a, c), white (black) 
stippling indicates a statistically significant partial correlation at the 
1 % (5 %) level. For the future period (b, d), stippling indicates the 
significance of the ensemble trends, with white (black) plus signs 
indicating an ensemble signal-to-noise of greater than two (one). 
Grey regions are areas where there is no net snow accumulation in the 

baseline period. The number of integrations that show a higher snow 
accumulation correlation with temperature or with precipitation at a 
given grid point, 2000–2060 are show in e. In e, at each grid point, 
we show the number of ensemble members that exhibit a stronger 
correlation with temperature (red) or with precipitation (blue) where 
more than half of the members with data at that grid point are more 
correlated with one than the other. Color shading indicates the num-
ber of realizations that show the correlation. The white (black) stip-
pling indicates where more than half of the runs that do exhibit a 
stronger correlation are significant at the 1 % (5 %) level
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Fig. 7  Late season net snow accumulation (a–d), snowfall (e–h), and 
snowfall-to-precipitation ratio (i–l) trends, as estimated in Fig. 5 (see 
“Methods”). Each plot shows the ensemble mean 50-year grid point 
linear trends for March (a, e, i), April (b, f, j), May (c, g, k), and June 
(d, h, l). The net snow accumulation values represent trends in the 
snow remaining on the ground in that month, summarizing cold-sea-
son snow accumulation and snowmelt in places with extended snow 

seasons. Snowfall and snowfall-to-precipitation ratio trends are fit 
to individual months, not cold-season (NDJFM) averages shown in 
other figures. Note that a is the same panel as in Fig. 5a. Grey indi-
cates regions with no net snow accumulation in the baseline. Stip-
pling indicates the significance of the ensemble-mean trend, with 
white (black) plus signs indicating an ensemble average trend greater 
than two (one) times the SD of all 40 individual trends

Table 4  Uncertainty in multi-decadal regional changes induced by internal climate variability

Each value represents the run with the maximum change minus that with minimum change. Values are expressed as a percentage of the baseline 
mean

Region ∆Net snow (%) ∆NDJFM temperature (°C)∆NDJFM precipitation (%)∆NDJFM snowfall (%) ∆NDJFM 
ratio (%)

(1) Alaska 13.82 1.66 9.08 9.98 7.31

(2) Arctic Canada 7.54 1.11 8.75 4.95 3.04

(3) W. US 33.33 0.81 11.28 12.97 12.43

(4) E. US 18.34 0.80 10.50 12.19 7.99

(5) N. Europe 29.76 0.89 7.53 15.82 15.24

(6) N.E. Europe 12.94 1.32 7.17 5.53 8.00

(7) N.E. Asia 3.73 1.27 6.11 3.95 2.04

(8) Central Asia 30.76 0.73 14.17 22.85 19.18

(9) Greater Himalaya 15.98 0.56 7.39 7.47 3.66
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Fig. 8  Grid point maximum 
and minimum linear trends. For 
March net snow accumulation 
(a, b), cold-season precipitation 
(c, d), snowfall (e, f), snowfall-
to-precipitation ratio (g, h), 
and temperature (i, j), each 
grid point shows the value of 
the maximum (left column) and 
minimum (right column) linear 
50-year trends from among the 
40 ensemble members. Each 
map, therefore, is a composite 
of the 40-member ensemble. 
Stippling indicates the statistical 
significance of the linear trend 
at that grid point within the 
ensemble member from which 
it was pulled, with white (black) 
dots representing a trend signifi-
cant at the 1 % (5 %) level

max trend min trend

N
D

JF
M

 te
m

pe
ra

tu
re

 [˚
C]

2
3

1

4

0
-1

N
D

JF
M

 p
re

ci
pi

ta
tio

n 
[%

]

0
20

-20
-40
-60

60
40

N
et

 sn
ow

 a
cc

um
ul

at
io

n 
[%

]

0
20

-20
-40
-60

60
40

0
20

-20
-40
-60

60
40

N
D

JF
M

 sn
ow

fa
ll 

[%
]

0
20

-20
-40
-60

60
40

N
D

JF
M

 sn
ow

fa
ll

N
D

JF
M

 p
re

ci
pi

ta
tio

n
[%

]

ba

dc

fe

hg

ji



Influence of temperature and precipitation variability

1 3

robust signal in cold-season surface temperature trends 
(Figs. 3a, 5c; Tables 2, 3). For example, according to Deser 
et al. (2012a), this large single-model ensemble can char-
acterize mid-latitude winter temperature variability with as 
few as 3–6 ensemble members, far fewer than the minimum 
of 15 needed for precipitation. The robustness of the tem-
perature response is evident at the sub-regional scale in our 
analyses, where the ensemble signal-to-noise in tempera-
ture trends is greater than 2 over all land areas (Fig. 5c).

Despite the robustness of the temperature trends, some 
areas do exhibit variations in the magnitude. For example, 
the intra-ensemble range of regional-scale trends is ~3 °C 
over Alaska and Northeastern Europe (Fig. 3a), suggesting 
that internal variability can damp or amplify the effects of 
global warming over large regions on multi-decadal time 
scales (Deser et al. 2012a). Likewise, many mid-latitude 
grid points exhibit statistically significant 50-year trends 
that range from less than 1.5 °C to greater than 2.5 °C 
across the ensemble (Fig. 8i, j), an ensemble spread that 
is driven by differing circulation anomalies arising from 
atmospheric noise (Deser et al. 2012b).

These increases in temperature could influence net snow 
accumulation both by decreasing the fraction of cold-sea-
son precipitation that falls as snow, and by increasing the 
rate of snowmelt during the cold season (Adam et al. 2009; 
Mote et al. 2005; Stewart 2009; Pierce and Cayan 2013; 
Diffenbaugh et al. 2012; Ashfaq et al. 2013; Rauscher et 
al. 2008). We find that the pattern and magnitude of cold-
season snowfall trends are similar to those of net snow 
accumulation trends (Fig. 5a, d). The decreasing net snow 
accumulation can be explained at least in part by precipita-
tion falling as rain rather than snow (Krasting et al. 2013; 
Kapnick and Delworth 2013). This transition is illustrated 
by the prevalence of decreasing cold-season snowfall in 
areas that exhibit decreasing net snow accumulation but 
increasing cold-season precipitation. Indeed, all 40 realiza-
tions exhibit mean declines in regional snowfall-to-precip-
itation ratios over all 9 regions, including the 2 regions that 
exhibit increases in snowfall (Arctic Canada and Northeast-
ern Asia) (Figs. 3e, 4e). In addition, the ensemble spread 
from natural variability is generally smaller for cold-season 
snowfall-to-precipitation ratio than for net snow accumula-
tion (Figs. 3, 4, 5, 8; Table 4), suggesting that the response 
of snowfall to global warming is more robust.

The large declines in snowfall-to-precipitation ratio are 
consistent with those found by the late twenty-first century 
in the CMIP5 RCP4.5 and RCP8.5 experiments (Krasting 
et al. 2013; Pierce and Cayan 2013). Further, the direction 
of change in snowfall-to-precipitation ratio is consistent at 
the regional scale (Table 3), and even at the sub-regional 
scale, where the trends are negative in all 40 realizations 
for the majority of grid points in the mid- and high-lati-
tudes (Fig. 8g, h). Increases in cold-season precipitation 

coupled with increases in the fraction falling as rain sug-
gest increasing winter runoff, with implications for win-
ter water storage (Barnett et al. 2005), spring and summer 
water availability (Diffenbaugh et al. 2012; Rauscher et al. 
2008), and the potential for more frequent rain-on-snow 
events (Putkonen et al. 2009). However, our results suggest 
that internal variability can influence the magnitude of this 
response within a region (such as in Central Asia; Fig. 3c), 
where the trends in snowfall-to-precipitation ratio can vary 
by up to 50 % of the baseline value (Fig. 3e).

These robust trends in temperature and snow-to-pre-
cipitation ratio—rather than uncertainty from precipita-
tion—are the dominating influence on regional net snow 
accumulation trends over the next half-century. Although 
hemispheric cold-season precipitation trends are positive in 
all realizations (Fig. 2c), internal variability creates uncer-
tainty at smaller spatial scales (Figs. 3c, 5b). The uncer-
tainty in these regional- and sub-regional-scale trends has 
been linked to persistent circulation anomalies (Deser et al. 
2012b; Mudryk et al. 2013). In contrast, many high-latitude 
areas exhibit consistent increases in cold-season precipita-
tion. Such increases have been linked to thermodynamic 
and dynamic responses and feedbacks from Arctic warm-
ing and sea ice loss (Serreze et al. 2000; Deser et al. 2010; 
Yin 2005; Held and Soden 2006).

The one region where near-term net snow trends appear 
to be clearly dominated by precipitation trends is North-
eastern Eurasia. As in previous analyses (Deser et al. 2010; 
Brown and Mote 2009; Diffenbaugh et al. 2012; Räisänen 
2007; Krasting et al. 2013), precipitation increases over 
the high-latitude areas of Northeastern Asia are associ-
ated with projected gains in March net snow accumulation, 
along with a greater number of grid points exhibiting larger 
snow-precipitation correlations than snow-temperature cor-
relations (Fig. 6b, d). Even with robust cold-season warm-
ing, temperatures over this region remain sufficiently cold 
to support March snow accumulation, allowing the precipi-
tation increases to lead to increases in net snow accumu-
lation (Brown and Mote 2009; Deser et al. 2010; Diffen-
baugh et al. 2012; Krasting et al. 2013).

However, the metric of March snow accumulation does 
not capture spatial variations in the length of the snow sea-
son, including with latitude, which may affect the trends in 
Northeastern Asia. Therefore, to test the sensitivity of our 
results to such variations, we analyze the late-season evolu-
tion of net snow accumulation, snowfall, and snowfall-to-
precipitation ratio trends for the months of March, April, 
May, and June (Fig. 7). Like the March net snow accumu-
lation variable we present elsewhere, the net snow accu-
mulation calculations for these months (Fig. 7a–d) repre-
sent trends in the mean snow remaining on the ground in 
that month, summarizing cold-season snow accumulation 
and snowmelt in locations where the snow season extends 
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beyond March. The snowfall (Fig. 7e–h) and snowfall-to-
precipitation ratio (Fig. 7i–l) values represent trends in their 
respective monthly mean values, not the trends in cold-sea-
son (NDJFM) averages presented elsewhere. Beginning in 
April, the Northeastern Asian interior shows a latitudinal 
contraction in snow accumulation trends (Fig. 7b–d) and 
snowfall (Fig. 7e–h), with 50-year June snow accumula-
tion trends that are 20 % below the baseline. These results 
highlight that the signal associated with warming exerts 
a stronger influence on regional snow accumulation than 
the uncertainty from precipitation. Further, the pattern of 
increases in near-term spring snow accumulation coupled 
with late-season declines in high-latitude continental inte-
riors (such as Northeastern Asia) could also be expected to 
occur in high-elevation mid-latitude regions. However, a 
major limitation is the ability of CCSM3 to accurately sim-
ulate the climate of those high-elevation regions given the 
model’s coarse spatial resolution (see “Caveats”).

4.2  Caveats

Given the influence of internal variability on the uncertainty 
of near-term snow trends, the results should be considered 
within the context of CCSM3’s simulation of observed 
modes of climate variability. Researchers have extensively 
evaluated the model’s ability to capture both the patterns 
and magnitudes of seasonal and inter-annual modes of 
variability in both the atmosphere and ocean (Collins et al. 
2006; Deser et al. 2006). In general, CCSM3 reproduces a 
number of the major modes of observed variability, as well 
as the amplitude and patterns of the seasonal cycle (Col-
lins et al. 2006). However, there are important patterns of 
seasonal and inter-annual variability that CCSM3 does not 
reproduce accurately, which may influence the model’s 
snowfall production and/or snow accumulation. In par-
ticular, the periodicity of ENSO, whose negative phase (in 
conjunction with a negative NAO) can influence positive 
snow anomalies in the US and Europe (Seager et al. 2010), 
is more frequent in CCSM3 than in observations (Deser et 
al. 2006).

One approach to addressing the limitations of the 
global climate model resolution is to use the GCM-sim-
ulated fields as inputs to nested high-resolution climate 
and hydrology models (e.g., Akhtar et al. 2009; Ash-
faq et al. 2010, 2013; Hayhoe et al. 2004; Rauscher et al. 
2008). Such approaches appear to more accurately capture 
observed sub-regional heterogeneity of snow hydrology 
(Ashfaq et al. 2013), including snowfall, which is criti-
cal in regions with complex boundary conditions, such as 
Central Asia (Kapnick and Delworth 2013). Quantifying 
the influence of internal variability on near-term trends in 
snow accumulation requires a large number of realizations 
of a single model, which the CCSM3 experiment provides 

for the full globe. Although multi-member high-resolution 
climate-hydrologic model simulations are becoming tracta-
ble, to date these have been limited to considerably smaller 
ensemble sizes and individual regions (e.g., Ashfaq et al. 
2013). Given sufficient computational resources, a clear 
next step is to merge these two approaches by running large 
ensembles of high-resolution nested climate-hydrology 
experiments over multiple regions. Such experiments will 
provide insight into the extent to which large-scale atmos-
phere and ocean variability interact with fine-scale pro-
cesses to shape the response of sub-regional-scale snow 
hydrology to near-term global warming.

5  Conclusions

We analyze a unique 40-member single-model ensemble 
climate model experiment to test the influence of inter-
nal climate system variability on the response of North-
ern Hemisphere snow accumulation to near-term global 
warming. Our analyses yield three key results about the 
irreducible uncertainty arising from internal climate system 
variability: First, uncertainty in the sign of regional pre-
cipitation change is insufficient to drive uncertainty in the 
sign of near-term regional-scale snow accumulation. Late-
season snow accumulation decreases in all regions, includ-
ing those that exhibit equivocal cold-season precipitation 
changes (the Western US, Central Asia, and the Greater 
Himalaya), or cold-season precipitation increases (North-
eastern Asia). Second, the consistency in the regional snow 
accumulation response appears to be driven by robust 
regional-scale warming, which reduces the fraction of 
precipitation falling as snow. Third, despite regional-scale 
consistency in the sign of the snow accumulation response, 
internal variability can influence the magnitude of snow 
accumulation trends at the hemispheric and regional scales, 
and the magnitude and direction of snow accumulation 
trends at the sub-regional scale, including in areas where 
the mean response is highly robust across the ensemble.

Characterizing the irreducible uncertainty in near-term 
changes in snow conditions is critical for effectively allo-
cating resources to manage evolving climate-related risks. 
Adapting to near-term snow changes will likely require 
regional and local responses that integrate both the long-
term trend and the influence of internal climate system var-
iability. Such responses potentially encompass institutional, 
social, and economic changes, as well as new hydrologi-
cal infrastructure—all of which can require long time hori-
zons to be implemented. Characterizing the probability of 
differing potential outcomes is one means to inform such 
adaptive response. Our results suggest that, in order to be 
effective, adaptation actions will need to integrate both the 
robustness of the snow response at the regional-scale and 
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the possibility that internal variability could dominate snow 
trends at the local-scale.
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