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Abstract. Every day, security engineers cope with a flow of cyber security 

incidents. While most incidents trigger routine reactions, others require orders of 

magnitude more effort to investigate and resolve. How security operation teams 

in organizations should tune their response to tame extreme events remains 

unclear. Analyzing the statistical properties of sixty thousand security events 

collected over six years at a large organization, we find that the distribution of 

costs induced by security incidents is in general highly skewed, following a 

power law tail distribution. However, this distribution of incident severity 

becomes less skewed over time, suggesting that the organization under scrutiny 

has managed to reduce the impact of large events. We illustrate this result with a 

case study focused on the empirical effects of full disk encryption on the severity 

of incidents involving lost or stolen devices. 

Keywords:  Cyber security, risk analysis, incident management systems 

1 Introduction 

Despite the large stakes currently associated with cyber security, unavailability of 

incident data has impeded the monitoring, analysis, and forecast of cyber risks. 

Information sharing initiatives are making progress,1 but at this time, simple metrics 

about the rate and impact of cyber attacks have remained largely inaccessible to 

researchers and to the broader public. Some publicly available databases record cyber 

security incidents, but these databases are heavily biased towards incidents that require 

public disclosure and large-scale incidents at major organizations that are reported by 

the media [3]. Therefore, many open questions exist about the statistical properties of 

cyber security incidents and their implications for the organization of security response. 

                                                           
1 For example, see information sharing initiatives in [1,2]. 
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Fortunately, cyber security incident data are collected for the purpose of auditing, 

compliance, and management [4]. These data can be leveraged to derive risk metrics, 

which in turn may lead to more informed security investments [5,6]. Here, we present 

a statistical analysis of 60,000 cyber security incidents spanning six years that occurred 

at a large US organization.  

Like many other natural and manmade disasters, cyber incidents involve extreme 

events. Even if these events do not necessarily lead to catastrophic damage, they may 

have unintended consequences. For instance, at a large Internet company, it was 

reported to the authors that the Heartbleed vulnerability2 required a team of more than 

five expert security engineers over a whole week to safely deploy the necessary patches 

across the infrastructure, with obvious disruptive effects and delays on the normal 

workflow of cyber security incident management.3 If even the best equipped and 

security aware organizations are struggling with such extreme events, which are 

relatively common [7], one may question the ability of average organizations facing 

similar challenges to quickly respond to critical incidents with enough manpower. For 

all organizations concerned with cyber security incidents, deciding how much in-house 

human expertise versus outsourcing [8], risk acceptance [5] and transfer (e.g., 

insurance) [9], is becoming an increasingly pressing question. 

In this paper, our objective is to bring quantitative insights on the relative weight of 

a few large cyber security incidents, compared to a multitude of small events. In the 

present data set, a single rare event accounts for nearly 30% of the total hours allocated 

by the security operation center over a period of six months (see e.g., Table 2, period 

8). Calibrating the statistical properties of cyber security incidents requires extreme risk 

modeling, which has been used to address other outstanding cyber security challenges, 

such as heavy-tailed distributions of personal data breaches [7,10,11]. We find that 

cyber security incidents tend to become overall less extreme over time, although some 

large outliers (so-called “Dragon-Kings” [12]) are found to have unique properties 

compared to less extreme events. We illustrate this latter point with lost or stolen 

devices (e.g., laptops), and we show how the consequences may be dramatically 

different depending on the type of information carried on the device. Furthermore, we 

show how the organization that we studied addressed this challenge by implementing a 

full disk encryption (FDE) policy. 

The rest of the paper is organized as follows. First, we review background research 

in Section 2. We then present the nature of cyber security incidents contained in our 

data set in Section 3, followed by a description of the standard statistical methods 

                                                           
2 See heartbleed.com for more information. 
3 Private conversation with a security engineer at a large payment processing company. 



 

 

employed for the study of extreme risks (Section 4). In Section 5, we report the 

evolution of incident frequency and severity distribution, and in Section 6 we discuss 

the results.  Finally, we highlight limitations and future work (Section 7) and we present 

our conclusions (Section 8). 

2 Related Work 

Most research in cyber security is motivated by established flaws or potential incidents, 

which may disrupt the normal operations of organizations active on the Internet. 

Typical research perspectives include documenting the origins and failure mechanisms 

of cyber security incidents [13], as well as their often non-obvious economic and social 

consequences at people, organization, and country levels [14]. 

Popular security incidents include software vulnerabilities [15,16], operation 

disruptions (in particular for critical infrastructures [17]), personal and sensitive data 

thefts [7,10,11] as a result of Internet attacks [18], insider threats [19,20], and human 

mistakes [21]. Most of these incidents carry their own uncertainties regarding 

probability of occurrence and severity, which most often remain hard to quantify since 

data are generally kept private by stakeholders. In some situations however, 

organizations are legally required to disclose publicly (e.g., personal data breaches), or 

given incentives to share security incidents with governmental agencies [22]. In many 

cases, public release has brought better understanding about the risks associated with 

these events [23,24], such as robust statistical models of personal data breaches 

[7,10,11], and predictive algorithms of software vulnerabilities [25-28]. 

For other categories of cyber security incidents, the paucity of data has impeded 

progress of collective understanding of these events. As such, it has limited the 

development and widespread adoption of best practices, which would have the potential 

to improve collective benefits in a comparable way to vaccination in epidemiology [29]. 

For the time being, most organizations have no requirement and usually no incentive to 

disclose information. Nevertheless, recording cyber security incidents at an 

organization has long been recognized as a critical part of IT security and much work 

has been written about the appropriate collection of cyber incident data [30-33]. US-

CERT requires that certain information be recorded and reported when an incident 

occurs on a federal information system [22].4 Therefore, many organizations record 

data in incident management systems but may not fully leverage that information. 

Ahmad et al. analyzed incident management systems at a financial institution and found 

that miscommunication and organizational barriers prevented incident data from being 

                                                           
4  See also https://www.us-cert.gov/incident-notification-guidelines 



 

 

best used [34]. Unfortunately, but for understandable legal and strategic reasons, 

security incident data are rarely shared. Therefore, academic research is typically 

limited to either theoretical considerations or surveys about incidents and practice, 

instead of data-driven empirical analyses [4].  

Nevertheless, some investigations have brought insights associated to cyber security 

incidents within organizations. In 2008, Condon et al. published an analysis of security 

incidents at the University of Maryland [35]. However, the data consists primarily of 

malware incidents, and only their frequency was studied but not their severity. In 

another analysis using University of Maryland data from incidents and intrusion 

prevention devices, researchers found that the number of attackers or attack signatures 

did not increase the number of security incidents, but that the number of corrupted 

computers on the university network did [36]. Others have studied vulnerability 

disclosures [37], or even the failure of financial information systems [38], but work 

analyzing cyber incident data currently remains scarce.  

In this paper, we show how a longitudinal analysis of historical cyber security 

incidents can be used to obtain probability distributions of incident severity, which we 

measured here in man-hours of investigation and remediation. Kuypers and Paté-

Cornell have used these probabilistic outputs as inputs to quantitative risk models to 

assess cyber risks in dollar terms by modeling the cost of incident investigation, and 

also reputation damage, business interruption, intellectual property loss, and other costs 

[6]. The generation of these probabilistic inputs is critical, given the heavy-tailed nature 

of some cyber incidents. Other cyber risk models have historically used expected values 

of losses instead of probabilistic inputs, probably because of data constraints [39, 40]. 

Models that use Monte Carlo simulations or other methods to probabilistically assess 

risk provide much more information about cyber risk [41].  

3 Data 

The data set used for this study is organized by security incident type. Security 

engineers create tickets and record information including a tracking number, the date 

of the incident, the number of systems impacted, the total number of hours of 

investigation, the suspected attackers, and other details about the incident.5 These 

incident tracking systems are common in large organizations and are used for workflow 

                                                           
5  Due to security concerns, the data will not be attributed to the organization. Further, 

identifying characteristics about the organization have been obfuscated. It is the authors’ hope 

that this paper will serve as an example for other organizations to publish cyber security data 

for researchers. 



 

 

tracking, auditing purposes, and have great leverage potential for cyber security 

intelligence.6 Note that these are not automatically generated log data, but manually 

entered tickets.  

The data, which span from roughly the beginning of 2009 to the end of 2014, contain 

a wide range of incidents, including lost or stolen devices, denial of service attacks, 

network exercises, employee misuse, phishing attacks, malware infections, and 

unauthorized access by attackers.7 The perpetrators also represent nearly all categories 

of attackers, including insiders, hacktivists, criminals, and nation states.  

Each incident in this data set is characterized by a number that specifies how many 

man-hours were required to investigate the incident, which generally also includes time 

spent remediating the incident. For example, the costs of a malware infection 

investigation include the time that an analyst must spend to identify the malware, wipe 

the hard drive, and reload a data backup. For the purposes of this paper, the incidents 

are classified into the categories listed below. We study each of these categories 

separately.  

 

a. Data spillage8: Incidents that possibly disclose information to unauthorized 

individuals are categorized as data spillage. For example, an employee could 

forget to encrypt an email that contains social security numbers.  

 

b. Email incidents: Any intrusion or attempted attack that originates through 

email is classified as an email incident. For example, criminals may try to 

extract a user’s email credentials to use their account for sending spam 

(“phishing”), or attach malicious files to an email to infect a user’s machine 

with malware.  

 

c. Lost or stolen devices: Laptops, tablets, phones, and other hardware can be 

lost or stolen. These incidents typically require different levels of investigation 

depending on the type of device and the encryption level.  

 

d. Tasks: These involve incidents caused by network exercises, wide scale 

patching, or investigations (such as pulling log files) meant to aid an audit or 

an inquiry (e.g. pulling an employee’s emails after allegations of harassment).  

                                                           
6  Typically, organizations with a mature cyber security program or security operations center 

will record incidents. The authors have confirmed the existence of varying degrees of cyber 

incident tracking systems with dozens of Fortune 500 companies, as well as many government 

agencies.   
7  The incidents are more appropriately described as ‘incidents that the security operations center 

(SOC) deals with’ instead of ‘cyber attacks against the organization’. 
8   Data spillage includes incidents that are often categorized as ‘insider attacks’. We do not use 

the term ‘insider attacks’ because the majority of incidents are accidental and not malicious.  



 

 

 

e. Website incidents: Any attack that exploits websites operated by the 

organization is classified as a website incident, including website 

defacements, SQL injections, and server compromises.  

 

f. Web browsing and USB incidents: Malware that does not originate via email 

or through a website is categorized as a web browsing/USB incident. For 

example, a user may inadvertently download malware while visiting a 

compromised website. Users may also spread malware via USB devices.9 

 

g. Other: While other types of incidents occur, many are not frequent enough to 

fall into a specific category. For example, denial of service attacks and insider 

attacks occurred very rarely at the organization that we studied. False alarms 

and near misses were also reported. We consider this class of events as a 

category by itself, despite its heterogeneity. This, however, limits the 

conclusions that may be drawn from a specific analysis of this category. 

 

The data offer a comprehensive view of the human resources deployed by a large 

organization over a long time period, and illustrate how this effort is distributed to 

tackle a large spectrum of cyber security incidents. The frequency of incidents is taken 

into account and their severity is measured in man-hours. The time spent by security 

engineers (and other people who may be involved in subsequent crisis management and 

mitigation) may not be the only source of monetary costs of cyber incidents. Yet, we 

believe that the expenses of human resources represent a good measure of the effort 

required to overcome these incidents. 

4 Method 

Today, most organizations face a flow of cyber security incidents that occur with some 

frequency and severity. By nature, each event requires a unique response effort. If the 

random variable that represents the severity of an event is defined by a narrow and well-

centered distribution, the overall cost stems from the frequency of these events, since 

all incidents have roughly the same severity. In this study, however, we observe that 

the costs of some events are larger by orders of magnitude than the median incident 

severity. The severity and the frequency of large events relative to average events is 

determinant and must be appropriately quantified. 

                                                           
9 Note that malware delivered via email (e.g. a malicious attachment or an email that contains a 

link to a malicious website) is classified under email attacks. 



 

 

Our statistical method is crafted to account for the existence of 3 levels of event 

severity as observed in our data set: (i) small “routine” events, which require less than 

2 hours of work, (ii) heavy-tail large events, and (iii) extreme outliers, which 

presumably stem from qualitatively different incidents (see Section 5.4 for further 

details). For each type of incidents, we quantify the evolution of their frequency and 

severity over the six years by segmenting the data into 12 time periods of approximately 

6 months, then analyzing them at the aggregate level, but also by threat category, as 

described in Section 3. 

4.1 Evolution of Incident Frequency 

The frequency is measured by the number of incidents per month, at the aggregate level, 

above a severity threshold (respectively 3, 10, 20 and 50 man-hours), and by category. 

At this point, we only consider long-term trends over the full six year period, and find 

that the rate of events evolves slowly overall. Therefore, we resort to linear regressions 

to quantify the rate of events. 

4.2 Nature and Evolution of Incident Severity 

The community interested in extreme risks has long discussed the nature of tail risks 

and some popular methods have been developed in the past to identify the model that 

“best” fits heavy-tailed random samples [42]. The usual point of debate is whether an 

“extreme” risk is actually extreme and bound to become more extreme over time 

(namely, with no statistical moment defined), or on the contrary, whether there is an 

upper limit of severity (see [7] for a study of personal data breaches, as a concrete 

example of an extreme, yet bounded risk). Overall, fitting extreme distributions is a 

challenge because statistics usually build on the law of large numbers, while extreme 

events are by definition rarely observed and, as such sampled over large periods.10 A 

variety of tools, such as Extreme Value Theory (EVT), have been developed to assess 

the probability of an extreme event beyond observations [43]. These tools are 

particularly useful for the (re)insurance industry, because they bring robust forecasts 

about the maximum claim amount resulting from a large disaster, allow predictive 

models to be developed, and help compute competitive insurance premiums [44].  

                                                           
10 It shall not be a surprise that first evidence for extreme risks was found for earthquakes, for 

which historical and geological footprints can be traced over very long time periods. 



 

 

Here, we observe that event severity follows a power law tail distribution given by,11 

𝑃(𝑆 ≥ 𝑠)  =  
1 

𝑠𝜇
  

where s is the severity and 𝜇 its exponent, within the boundaries defined by the lower 

threshold, and for values smaller than the outliers. We take the power law model as our 

default model, and we want to assert within which lower (set at 2 man-hours for this 

study) and upper boundaries, the null hypothesis (that our data are not drawn from this 

model) cannot be rejected.  

Given a sample, we find the best fit using maximum likelihood estimator (MLE) 

[10,42]. Goodness-of-fit is obtained by performing Monte Carlo simulations of 

synthetic data sets with the same parameters and size (bootstrapping method), and by 

using the Kolmogorov-Smirnov (KS) test, which measures the maximum distance 

between the model and the generated distributions [45]. The p-value is obtained as the 

ratio of KS statistics for the synthetic data sets whose value exceeds the KS test for the 

real data set; therefore, the larger p, the more accurate the model’s description of the 

data. We chose a relatively conservative level (p > 0.1) as the rejection level for the null 

hypothesis [42]. The outliers are detected by removing extreme values, until p > 0.1 for 

the tail distribution of the main power law (i.e., until we can reject the null hypothesis). 

If more than a couple of outliers are present, we attempt to fit an outlier tail regime, 

with a power law model [7]. While more sophisticated methods have been developed 

to account for extreme outlier regimes [46], these model specifications, encompassing 

the main and outlier tail regimes, are sufficient to account for the statistical properties 

found in our data set.  

5 Results 

5.1 Cyber security incident frequency 

The frequency of all cyber incidents is found to be increasing over time (see Figure 1), 

but the change is driven by small incidents (less than 2 man-hours). The number of 

large incidents is remarkably constant over time. The rate of incidents taking five hours 

or more to investigate remains very stable, with an average of 45 incidents per month. 

The increase in small-scale incidents is attributed to evolving incident recording 

guidelines over time, which is explained in more detail in Section 5.3.  

                                                           
11 Note that 𝑓(𝑥)  =  1/𝑥𝜇  implies 𝑙𝑜𝑔(𝑓)  =  −𝜇 ∗ 𝑙𝑜𝑔(𝑥), therefore the linear relationship in 

double logarithmic scale. 



 

 

 

Fig. 1. The number of all cyber security incidents over time, along with linear regressions. Note 

that the y-axis is presented on a logarithmic scale. 

Analyzing the rate of incidents for different attack vectors gives a more detailed view 

of cyber security at the organization. Figure 2a shows the number of web browsing/ 

USB incidents recorded over time. The total number of incidents is slowly decreasing 

over time (2 events per month), while the number of incidents that require more than 

10 hours of investigation remains relatively constant over time, at a level of about 7 

events per month.  

The frequency of lost devices is significantly different from that of browsing 

malware infections (Figure 2b) as malware incidents occur much more frequently than 

the loss of devices (thousands of malware incidents per month compared to less than 

one hundred lost devices per month). Also, the total number of lost device incidents 

increased dramatically around 2012, from an average of 7 events per month in the first 

year to 50 events per month in the last year. The increase in the frequency of lost devices 

is largely due to a change in incident reporting guidelines. Before 2012, losses of mobile 

phones were often not recorded because those devices did not contain any sensitive 

information, and losses of security tokens were not recorded because few employees 

had them.12 However, as email information began to reside on cellphones, recording 

stolen or lost devices became more common. Similarly, the number of lost tokens 

increased as more employees used them. Fitting the last two years of data, during which 

the reporting guidelines remained consistent, we find that on average, 50 (standard 

deviation 5) devices were lost per month. 

                                                           
12 Security tokens are used as a form of two-factor authentication.  



 

 

 

Fig. 2. Web browsing/USB and lost devices incidents over time. Note that the y-axis is on a log 

scale.  

Table 1 shows the rate of incidents for all cyber incident categories, and a linear 

regression. We find that for this organization, most cyber incidents occur at a 

surprisingly constant rate.  

Table 1. The average monthly number of incidents for each category, and the change per month, 

calculated using a linear regression. The four vectors with the largest change are highlighted for 

each division of investigation hours.  

 

5.2 Cyber security incident severity  

The impact distribution of cyber incidents is made up of three regimes; low impact 

incidents (less than 2 man-hours of work), a main tail section, well represented by a 
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power law distribution, and in some cases, a transient outlier tail regime also well 

described by a more extreme power law distribution with a smaller exponent. Figure 3 

shows the Complementary Cumulative Distribution Function (CCDF) of all incidents 

that occurred during the 11th time period. The CCDF determines the probability that an 

event will cost more than a given amount. For instance, there is approximately 1% 

(respectively, 0.1%) chance that an event involving more than 10 (respectively 100) 

hours of work will occur. 

 

Fig. 3. The CCDF of investigation time for all incidents in the 11th time period. Note the three 

regimes: small incidents (here for impact < 0.5 man-hours), the main tail (blue dotted line), and 

an outlier tail (magenta dotted line).   

The tail distribution shown in Figure 3 is best described by a main power law tail 

𝑃(𝐶 ≥  𝑐) ∼ 1/ 𝑐𝜇   , with 𝜇 =  1.80 ± 0.06, for 0.5 < c < 30, and an outlier tail 

regime with 𝜇 =  0.8 ± 0.5, for c ≥ 30. The outlier regime is of particular importance 

because while the main tail has an exponent μ > 1 with its first statistical moment (i.e., 

average) defined, the outlier tail (μ < 1) has no statistical moment defined. In other 

words, as more events get sampled, new even more extreme events are likely to appear, 

pushing the average towards larger values as a result of the outlier regime. Note that 

these outlier regimes are transitory over the 12 periods considered.  

5.3 Changes over time 

Cyber security and cyber threats are rapidly evolving, with new vulnerabilities 

announced on a daily basis. Over the six years included in our data, changes in security 

safeguards, network structure, and security processes have occurred. However, the 

impact distribution is consistently well accounted for by a power law model (see Table 

2). Furthermore, we find evidence that all incidents taken together are overall becoming 



 

 

less extreme over time. Figure 5 shows the impact distribution of all events greater than 

2 man-hours over the time periods from 1 to 12. The exponent μ governing the skewness 

of the tail distribution of the power law for incidents’ severity is generally increasing 

over time (meaning that incidents are becoming less extreme). This suggests that the 

organization has become more efficient at dealing with large cyber incidents.  

 

 

Fig. 4. Evolution of the complementary cumulative distribution function (CCDF) of impact for 

all incident types. 

The CCDF represented in Figure 4 shows that the impact distribution becomes less 

heavy-tailed (and thus less extreme) over time. For typical frequencies 10%, 1%, and 

0.1% from the main tail distribution (i.e., disregarding outliers), the impact has been 

reduced by respectively, 2, 40 and 600 man-hours in the six-year time frame considered 

(i.e., between periods 1 and 12) and up to statistical fluctuations reported in Table 2. 



 

 

While the main tail section of the distribution (greater than 2 man-hours) has become 

less extreme over time, the number of small incidents has increased by a factor greater 

than 38 in period 12 compared to period 1.13 Most of the rapid increase of the number 

of documented incidents over time was caused by the organization’s implementation of 

new incident recording guidelines. The majority of additional incidents were small, 

requiring less than two hours of investigation. Table 2 shows the number of incidents 

during each of the 12 time periods observed from 2009 to 2014.  

Table 2. For large events, the power law model cannot be rejected (p-value > 0.10), with the 

exception of periods 4, 8, and 11 (highlighted in orange), for which extreme outliers were 

detected. In period 4, two points deviate from the main tail regime, while for 8 and 9, an outlier 

tail regime is made up of several points, whose statistical properties are also best explained by a 

power law. For periods 4, 8 and 11, we provide a corrected model to account for the main tail (*) 

and outlier tail regime (**). 

 
 

A comparison of small versus large incidents shows that over time, more resources 

are being devoted to smaller incidents. For instance in period 5, there are more small 

events (1,026) than tail events (688); yet, the tail events generated over 5 times more 

investigation hours. In presence of outliers, the aggregated costs are even more skewed 

towards extreme values. Consider period 8** in which 3,355 events generated 11,774 

hours (i.e., 491 days) of work: the 14 most extreme events (each having required more 

than 41 hours of work) account for 5,284 hours (i.e., 220 days), and among them, the 

most extreme event alone accounts for 2,762 hours (i.e., 115 days) of work. However, 

the majority of investigation time switches to small impact incidents in time periods 11 

and 12. This shift corresponds to the new incident reporting guidelines described 

earlier. Interestingly, the increased diligence at low-level incidents appears to have only 

a small effect on the skewness of the tail distribution, but at a cost of a large increase 

                                                           
13 Note, however, that most of the increase occurs from period 11 to 12, which corresponds to a 

directive to begin recording port scans and attempted website attacks. 



 

 

in the total hours spent on the investigation of incidents. Figure 5B exhibits the linear 

relationship, with a slope = 0.28 ± 0.05 (p-value < 0.01), between the main tail exponent 

and the total number of incidents recorded during a time period.  

Evidence also exists that incidents are generally becoming less extreme over time. 

Figure 5A shows that the exponent of the tail power law distribution for all incidents, 

as well as for each attack vector over 12 time periods, is increasing.  

 
Fig. 5. A: Evolution of the power law exponent over time for different types of incidents; B:  The 

main tail distribution (xmin = 2), characterized by the exponent μ, as a function of the number of 

events (logarithmic scale) per time period. The more events in one period, the larger μ, thus the 

less skewed the distribution. For a good understanding of the probabilities at stake, consider three 

values of μ = {0.5, 1, 2}. The probability of an incident of cost C is given by 𝐶 = 1/𝐶𝜇, so 

occurrence probabilities for events of cost 100 man-hours are respectively 10%, 1%, 0.01%. 

5.4 Case study: Deployment of full-disk encryption (FDE) policy 

Historical cyber incident data can also be used to validate empirically some security 

investment decisions [6]. The organization studied here implemented full disk 

encryption (FDE), which increases the difficulty of extracting information from lost or 

stolen devices by requiring a password before a computer boots. Most data breach 

notification laws in the US States do not require breach notification in cases where the 

stored information is fully encrypted.  

We observed and measured the effects of FDE on lost-device investigation times by 

observing that the outliers disappear after the FDE policy was implemented (see Figure 

6). The whole pre-policy distribution is not well fitted by a power law tail (cyan + red 

lines, p < 0.10 implies that we cannot reject the null hypothesis that the sample is not 

drawn from a power law) because an outlier regime exists (red line, 𝜇 = 0.52, p = 0.46). 

Comparing the distribution of severity before FDE policy implementation without the 

outliers (purple line, 𝜇 = 1.89, p = 0.79), and the distribution post-FDE implementation 

(blue line, 𝜇 = 1.85, p = 0.43), one cannot reject the hypothesis that they are both drawn 

from the same distribution. In other words, we can confidently say that the FDE policy 



 

 

has removed the outlier regime, which accounted for 45% of the overall time spent on 

lost devices.  

Based on a careful qualitative assessment of descriptions provided for outliers by 

security engineers at the organization, we found that devices that contain sensitive 

information (such as personally identifiable information, trade secrets, or other 

intellectual property) are not very common, but require an overwhelming amount of 

work, associated with investigation (e.g. analyzing backups, performing forensics, 

and/or notifying individuals of the breach). 

 

Fig. 6. The CCDF for lost devices before and after FDE was implemented.  

Assuming that the outlier tail regime has disappeared, we can state that the time spent 

on stolen devices has been reduced by a factor 4 (simply due to the removal of outliers), 

meaning that full disk encryption in that case has been a very cost-effective prevention 

measure. 

6 Discussion 

We have analyzed 60,000 incidents recorded at a large organization over a six-year 

period. While we find several changes in the rate of security incidents over time, many 

of the changes can be attributed to changes in the incident reporting guidelines. 

Therefore, the rate of many incident categories can be considered relatively constant 

over time. We also find that incidents fall into three categories of severity; namely small 

incidents, a main power law tail, and an outlier tail following another, more extreme 

power law. Incidents themselves are generally becoming less extreme over time as well, 



 

 

indicating that the organization may be improving their detection and remediation. 

Finally, we empirically observe that the outlier tail distribution of investigation times 

for lost devices was removed after full disk encryption was implemented, meaning that 

the reported parameters can be used for further cyber risk modeling [6].  

These results have a number of implications for decision and policy makers, 

including a demonstration of how incident management systems provide practical, 

operationally impactful insights about workflow and IT budgeting.  

6.1 Stability of cyber incident statistics  

At security conferences, a common concern is that a risk analyst will spend a significant 

amount of time calculating how often Windows 8 is attacked and exploited, but that the 

conclusions will not be relevant to Windows 10. In fact, the rate of cyber security 

incidents is constant, or changes on the timescale of years. It may be surprising that the 

rate of incidents is so regular given the number of changes that occurred in that 

organization over six years, which included employee turnover, network restructuring, 

adversary adaptations, evolving defensive capabilities, and leadership changes. Certain 

incident types (e.g. lost laptops and data spillage) are unlikely to disappear, but 

quantifying the rate of these predictable incidents can help in budget planning and 

resource allocation.  

6.2 Heavy-tailed Distributions 

There is considerable evidence that the impact of cyber incidents follows a heavy-tailed 

distribution [7,10,11]. These distributions are poorly characterized by their first and 

second moments (mean and variance). Failure to adequately address the heavy-tail 

nature of cyber attacks can deteriorate the workflow. On the contrary, excess risk could 

be transferred via an insurance product that provides coverage for rare, severe events 

that may overwhelm a SOC.  

Incident’s severity appears to be slowly decreasing over time, but the form of the tail 

distribution (power law) is consistent across categories and over time. It is unclear if 

the heavy-tailed distribution of event severity is a result of incident investigation, 

adversary skill, network topology, or some other cause. The decrease in the tail 

exponent over time could result from better investigation, better detection capabilities, 

or better response capabilities. It is important to note that many attack vectors 

(including website incidents, lost devices, and other incidents) have distinct outlier tails, 

which suggest a different growth process for some large incidents.  



 

 

6.3 Implications 

One of the most striking features of these data is how well they are modeled by 

relatively simple14 and slowly evolving statistical models. Our results may be useful to 

safety engineers who develop cyber risk models [6]. It may also help managers test and 

implement new prioritization strategies [14,40,47]. While human judgment is critical 

for detecting and coping with risks, we believe that data-informed cyber risk models 

are also desirable to reduce some human biases in interpretation, which in turn result in 

suboptimal decisions [48]. 

Here, we stress that data about cyber security incidents have the potential to 

dramatically improve situational awareness by providing ground truths about the cost 

of cyber incidents. For example, another organization discovered that a significant 

portion of website attacks occurred against legacy servers that had been abandoned by 

a project team. Websites were not maintained or removed after the project expired, 

leading to severe breaches of security. Another Chief Information Security Officer 

(CISO) was able to show that contrary to the intuition of the company, the rate of attacks 

did not increase when the organization received media attention, and that additional 

staffing in anticipation of other attacks was not useful.15   

7 Limitations and Future Work  

As with any real world data set, incomplete records and recording biases exist. For 

example, security officers at the large organization studied here have reported that 

investigations taking less than 30 minutes are typically not documented and so we have 

an incomplete view of the smallest incidents. Also, these data do not address reputation 

damage, although qualitative evidence from the organization is consistent with 

literature that shows a tenuous link between data breaches and stock prices [49-51]. 

These data are limited to incidents that were detected. While it is possible that hackers 

have compromised this organization many other times but were not detected, 

challenging our results would require that the records used here are only a fraction of 

all attacks (detected and undetected). We believe that this is unlikely and that the results 

presented here are representative of the most common attacks that this organization has 

faced. Our work also says nothing about other organizations, although we hope that 

more incident data will become available to researchers in the future. Additional data 

                                                           
14 Note that both the frequency of events described by a rate of event, and the severity described 

by a power law exponent, are 1-parameter statistics. 
15 Both examples come from private conversations with a large organization. 



 

 

from a wide range of industries could greatly improve the awareness of different 

attacker strategies, and inform effective defenses.  

This paper is a first attempt to understand how cyber security incidents are dealt with 

within organizations. More work on understanding the organizational challenges for 

cyber security is needed. In particular, strategies for managing heavy-tailed incidents 

and resource planning deserve more attention. For example, a comparison of a policy 

prioritizing the investigation of small incidents over large incidents (to test whether 

investigators become distracted when investigating large incidents) would benefit 

incident resource planning.    

Our analysis presents a picture at a coarse-grained level, but the finer details and 

dynamics of cyber incidents are unknown. The waiting times between incidents and the 

duration of an incident investigation (in complement to the workload studied here) are 

also unknown. Other work could model the variability of incidents to determine if many 

small incidents precede larger incidents, therefore acting as an indicator of future 

attacks. A number of other unknowns remain, including how management decisions 

about investigation and remediation are made. Cyber incidents can track the 

effectiveness of new safeguards over time, but cannot necessarily predict which 

additional safeguards will be effective, especially in the case of adaptive adversaries.  

8 Conclusion 

Organizations are constantly bombarded with new cyber attacks, and security operation 

centers must continuously optimize their operations due to scarce resources. From tens 

of thousands of cyber security incidents, surprising trends emerge that can improve the 

cyber situational awareness of an organization, its resource investments, and its 

assessment of cyber risk. We find that the rate of cyber security incidents is relatively 

stable over time. Small incidents that are quickly resolved combine with a main power 

law tail and a transient extreme outlier tail regime to form impact distributions that are 

decreasing in incident severity over time and following security policy upgrades.  
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