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Abstract

Background: This study characterizes the historical relationship between coverage of measles containing vaccines (MCV)
and mortality in children under 5 years, with a view toward ongoing global efforts to reduce child mortality.

Methodology/Principal Findings: Using country-level, longitudinal panel data, from 44 countries over the period 1960–
2005, we analyzed the relationship between MCV coverage and measles mortality with (1) logistic regressions for no
measles deaths in a country-year, and (2) linear regressions for the logarithm of the measles death rate. All regressions
allowed a flexible, non-linear relationship between coverage and mortality. Covariates included birth rate, death rates from
other causes, percent living in urban areas, population density, per-capita GDP, use of the two-dose MCV, year, and
mortality coding system. Regressions used lagged covariates, country fixed effects, and robust standard errors clustered by
country. The likelihood of no measles deaths increased nonlinearly with higher MCV coverage (ORs: 13.8 [1.6–122.7] for 80–
89% to 40.7 [3.2–517.6] for $95%), compared to pre-vaccination risk levels. Measles death rates declined nonlinearly with
higher MCV coverage, with benefits accruing more slowly above 90% coverage. Compared to no coverage, predicted
average reductions in death rates were 279% at 70% coverage, 293% at 90%, and 295% at 95%.

Conclusions/Significance: 40 years of experience with MCV vaccination suggests that extremely high levels of vaccination
coverage are needed to produce sharp reductions in measles deaths. Achieving sustainable benefits likely requires a
combination of extended vaccine programs and supplementary vaccine efforts.
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Introduction

Historically, measles infections have been a major cause of

morbidity and mortality in children, even though effective measles

containing vaccines (MCV) were first developed more than 40

years ago [1]. Global efforts to prevent measles deaths have

aligned around the United Nations’ Millennium Development

Goals (MDG), which identify childhood mortality reduction as a

key priority, specifically calling for a two-thirds reduction in

mortality among children under age 5, between 1990 and 2015

(MDG 4). MCV vaccination programs form a cornerstone of these

efforts with ambitious targets, including universal childhood

measles vaccination and 90% reductions in measles deaths from

year 2000 levels (733,000 worldwide) [2].

Thus far, substantial progress has been made. In 2008, there

were an estimated 164,000 measles deaths, a 78% reduction

compared to mortality in 2000 [2]. However, the continued

effectiveness of vaccination efforts depends on the interaction of

numerous socio-demographic and systemic factors that define

patterns of measles transmission, effectiveness of vaccination

programs, and survival of infected children. In light of these

challenges, it is important to monitor program scale-up and gauge

whether advances in vaccination coverage will be sufficient to

attain global targets for reducing measles mortality [3,4,5,6].

As efforts proceed to expand coverage and sustain the benefits

of vaccination in countries with the highest burdens of measles

mortality, our aim in this study was to quantify the relationship

between historical MCV coverage increases and reductions in

child mortality in light of related demographic and economic

factors, and critically consider the implications of our findings for

current vaccination efforts in high-burden settings.

Methods

We used regression analyses to assess the relationship between

MCV coverage and measles mortality in children under five years,
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conditioning on relevant country-level factors. The regression

models related changes in measles mortality in children under 5

years of age to changes in MCV coverage levels over time within

each country while adjusting for country-level variables. Vaccina-

tion coverage is expected to influence measles incidence, which in

turn will impact on measles mortality, through the mediating effect

of the case fatality rate (CFR). Because epidemiological targets are

expressed in terms of mortality reductions, and because accurate

measles incidence data are difficult to obtain for many countries,

we chose to model a reduced-form relationship between MCV

coverage and mortality. By examining the coverage-mortality

relationship within countries and over time and by including

country-level variables that are likely to influence incidence, CFR,

or both, our aim was to minimize potential confounding in

characterizing the relationship between MCV and mortality.

Model variables
The primary outcome of interest was the measles-specific death

rate for children under five years, computed as the number of

deaths classified as measles divided by the at-risk population (i.e.

children under 5) in a given country and year. The main

independent variable was the proportion of 1–2 year-olds

vaccinated with at least one dose of MCV during the year. We

hypothesized that: (a) higher MCV coverage is strongly related to

lower measles mortality, although the relationship will be non-

linear, consistent with herd immunity [7]; (b) the likelihood of

having no measles deaths in a country-year increases as MCV

coverage increases, consistent with stochastic fade-out and local

eradication [8].

Other covariates were included in the models because of their

direct or indirect relationships with measles mortality or their

potential to modify the relationship between MCV coverage and

measles mortality. We included an indicator of whether a country-

year’s vaccination schedule recommended two MCV doses. Two-

dose vaccination was introduced to increase immunity to measles

infection [9,10]. Therefore, a given level of MCV coverage with a

two-dose course could lead to greater reductions in measles

mortality than with a single dose.

We included changes in determinants of infectious disease

epidemic dynamics: population density, proportion living in urban

areas, and crude birth rate in a given country and year. Higher

population density increases contact rates and transmission.

Greater urbanization increases contact rates for urban dwellers,

but also reduces travel distances to medical facilities. Its net effect

on measles mortality is unclear. Higher birth rates increase the

influx of susceptible individuals leading to greater epidemic risk.

The models included changes in socioeconomic determinants of

health over time: real per-capita gross domestic product (GDP)

(2000 international dollars) and mortality rates from all causes

other than measles in children under five years. Increasing GDP is

associated with reduced sickness and improved survival, likely

related to improvements in education, nutrition, public health, and

health care [11,12,13,14].

Year and mortality coding system (International Classification

of Disease (ICD) version) were included to enhance outcome

comparability over time. Observation year reflects secular trends

not captured by other variables. Changes in ICD coding system

can cause otherwise similar deaths to be classified differently,

artificially changing apparent measles mortality.

Data sources and inclusion criteria
The WHO Mortality Database provided age-specific death

rates by cause, and with a specified coding system, collected in a

common format [15]. A previous study [16] provided quality

ratings for each country’s mortality data. Vaccine coverage after

1980 was derived from WHO/UNICEF estimates [17]. WHO/

UNICEF estimates were used instead of Demographic and Health

Surveys (DHS) since, although DHS vaccination data are often

used in analyses of vaccination [18,19], they are not available for

most countries that we were able to evaluate in this analysis. For

vaccine coverage prior to 1980, we relied on country-specific

reports (Section S1 in Appendix S1). WHO provided data on the

year in which a country introduced a two-dose MCV schedule

[20]. Other data were derived from the World Bank [21], United

Nations Population Division [22], and the Penn World Tables

[23]. For 1960–2005, countries were only included in the analysis

if they had country-years with medium or high-quality mortality

data, and MCV coverage as well as all other covariates were

available (Section S1 in Appendix S1).

Statistical methods
Data analysis was undertaken using longitudinal panel regres-

sions. Logistic regression was used to assess the odds of having no

measles deaths in under-5 children in a given country-year

compared to pre-vaccination risk levels. Linear regression was

used to model the log death rate from measles in a given country-

year (Section S2 in Appendix S1). In all models, aside from

observation year, all independent variables that are not indicators

or percentages were log-transformed so estimated coefficients

could be interpreted as elasticities [24]. For example, the model

coefficient for MCV coverage may be understood as the percent

change in measles mortality rates for children under 5 associated

with a 1% change in coverage. Independent variables other than

observation year and ICD coding system were lagged by 1 year.

Country-level fixed effects were included to absorb unobserved

country-level heterogeneity (e.g., determinants of variation in case

fatality rates not explained by other covariates in the model), and

robust standard errors, clustered by country, were estimated using

the jackknife method.

Since the relationship between coverage and mortality is not

necessarily linear, coverage was either categorized using indicator

variables or entered as restricted cubic splines [25]. We divided MCV

coverage into six categories: 0%; 1–59%; 60–79%; 80–89%; 90–

94%; and $95% coverage. These divisions were prospectively

defined so the numbers of observations in each level above 0% were

nearly equal and cutoffs were divisible by 5. The restricted cubic

spline specification used the same cutoffs (Section S2 in Appendix S1).

To translate the spline regression results into interpretable

mortality/coverage relationships for different starting MCV coverage

levels, we estimated the expected percent reduction in under-5

measles-specific mortality and associated confidence intervals with

simulations. The simulations comprised 20,000 random draws of all

model coefficients from multivariate normal distributions using the

estimated regression coefficients and their associated variance-

covariance matrix. With each set of coefficients, we calculated

expected measles-specific mortality rates at MCV coverage levels

from 1% to 99%. Then, to reflect the change in measles mortality

related to increases in coverage, we calculated reduction in measles-

specific mortality associated with increasing MCV coverage to 90–

99% from coverage levels of 50–95%. We similarly calculated

interquartile ranges and 5th and 95th percentiles.

We examined the sensitivity of our results to key assumptions.

The restricted cubic spline model specification was compared to:

1) a model without MCV coverage; and 2) a model with a constant

log-linear relationship between MCV coverage and mortality.

Alternative specifications were compared using Akaike and

Bayesian Information Criteria [26,27]. We also used these

Information Criteria to assess alternative categorizations of

Vaccination and Measles Deaths
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MCV coverage levels. We assessed the impact of lagging MCV

coverage by one year compared to a model in which MCV

coverage was averaged over the previous 5 years. We assessed the

impact of non-linear time trends by comparing the main model

with one using year fixed effects. We explored other statistical

models including negative binomial regressions. To consider the

potential relevance of the historical patterns to countries with large

measles burden at present, we assessed potential bias by

reanalyzing subsets of countries from our full dataset with lower

and higher per-capita GDP.

All analyses were undertaken using Stata/SE 10.0 (StataCorp,

College Station TX).

Results

The countries and years included in our analysis spanned broad

ranges in terms of measles mortality, birth rate, urban population

and density, and MCV coverage (Table 1). Countries were mostly

middle- to high-income, as the analysis required higher-quality

vital registration systems. Nonetheless, all MCV coverage levels

were represented, with MCV coverage above 60% in the majority

of years.

Higher MCV coverage was associated with a greater chance of

having no measles deaths in children under 5 in a given year

(Table 2). Coverage levels $80% were significantly and positively

associated with no measles deaths in the multivariable model.

Without MCV vaccination, the model predicted that 5% of

country-years would be free of measles deaths for children under 5

years, increasing to 69% of country-years when MCV coverage

exceeded 95%.

Coverage levels above 60% were associated with increasingly

significant reductions in measles mortality in the multivariable

model. Table 3 shows the relationship between MCV coverage

and measles death rates in children under 5. Measles mortality

declined most rapidly as MCV coverage increased from 30%

through 75% (from 226% to 283% over this range), while at

MCV coverage above 85%, further mortality declines were

significant but smaller in scale (an additional 25% from 85% to

99% coverage).

Both observation year and crude birth rate also were

significantly associated with measles death rates (Table 3). There

was an expected 12% decline in measles deaths each year, holding

all other model variables fixed. Higher birth rates were associated

with higher measles mortality rates, with a 1% increase in birth

rate associated with a 3.5% increase in measles death rate. This is

consistent with the observation that faster entry of susceptible

individuals into the population makes measles outbreaks more

likely.

Notably, though not reaching statistical significance at the

p,0.05 level, results were suggestive that the introduction of a

2-dose measles vaccination course were related to a greater chance

of having no measles deaths in a given year and to lower measles

mortality levels in children under 5 years of age (Table 2 and

Table 3).

While substantial gains are expected with increased MCV

coverage, the expected magnitude of additional gains are less

certain at coverage levels above 90%. Figure 1 shows the expected

impact of increasing MCV coverage from various starting levels to

90% (Panel A), 95% (Panel B), or 99% (Panel C). For example,

increasing from 75% to 90% MCV coverage reduces measles

mortality rates by 60% (interquartile range: 53–69%; 5th to 95th

percentile: 36–77%).

The main findings were assessed in sensitivity analyses (Sections

S3, S4, S5, and S6 in Appendix S1). The findings were robust to a

range of alternative methodological choices and assumptions, with

estimated benefits in the sensitivity analyses differing by less than

15% from those reported in the main analysis. Importantly,

because current measles burdens are in countries that are

generally poorer than those in our data set, we assessed the

associations between MCV and measles mortality for countries

stratified by per-capita GDP (above/below $7,000) for countries in

our data set. We found that poorer countries had greater benefit

from increased MCV coverage, though benefits differed by no

more than 5%.

Discussion

Forty years of international experience with the impact of

measles vaccination programs on child mortality suggests that

sustained high levels of MCV coverage, along with other factors,

contributed to dramatic declines in measles deaths. In light of

current efforts to improve child health, measles vaccination has

played and will continue to play an important role. As the Measles

Initiative reports, impressive reductions have been achieved in

some countries with previously high measles mortality rates [28],

though there is still much work to be done.

This analysis has several strengths. It characterizes the historical

relationship between MCV coverage and mortality as observed

Table 1. Characteristics of the study sample.*

Values

(n = 980)

ICD-7 coding system used, % of country-years 18.4

ICD-8 coding system used, % of country-years 19.7

ICD-9 coding system used, % of country-years 55.4

ICD-10 coding system used, % of country-years 6.5

High quality mortality data, % of country-years) 31.7

Measles death rate, per 100,000 children under
5 per year, mean (SD)

7.0 (29.3)

No measles deaths observed, % of country-years 38.7

Background mortality rate, per 100,000 children
per year, mean (SD)

1,291.1 (1,289.3)

MCV coverage, % of 12–24 month-olds, mean (SD) 57.4 (39.6)

MCV coverage of 1–59%, % of country-years 12.6

MCV coverage of 60–79%, % of country-years 14.7

MCV coverage of 80–89%, % of country-years 14.2

MCV coverage of 90–94%, % of country-years 14.7

MCV coverage of $95%, % of country-years 17.3

Two doses of MCV, % of country-years 30.4

Crude birth rate, per 1,000 adults per year, mean (SD) 19.0 (9.1)

Population density, per sq km, mean (SD) 102.3 (100.5)

Under-5 population, millions, mean (SD) 2.8 (4.5)

Urban, % of population, mean (SD) 67.4 (14.5)

Per-capita GDP, in 2000 international dollars, mean (SD) 12,853 (7,629)

*Countries included in the analysis: Austria, Azerbaijan, Belarus, Belgium, Belize,
Brazil, Bulgaria, Canada, Chile, Colombia, Costa Rica, Cuba, Denmark, El
Salvador, Finland, France, Germany, Guatemala, Hungary, Ireland, Israel, Italy,
Kazakhstan, Kuwait, Kyrgyzstan, Luxembourg, Mexico, Netherlands, Norway,
Panama, Republic of Korea, Romania, Russian Federation, Spain, Sweden,
Switzerland, TFYR Macedonia, Turkmenistan, Ukraine, United Kingdom, United
States of America, Uruguay, Uzbekistan, and Venezuela.
doi:10.1371/journal.pone.0013842.t001
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across 44 countries over the past 40 years. It evaluates this

relationship, conditioning on country differences likely to impact

the population dynamics of measles. It captures nonlinearities in

the relationship between coverage and mortality, relevant for

considering potential health benefits due to increased coverage for

countries starting at different MCV coverage levels.

The analysis also has limitations. Data were drawn from

multiple sources and rely in part on country –reports on mortality

and vaccination coverage. While we cannot rule out bias, the fact

that the estimated effects of covariates such as crude birth rate

were consistent with their expected directions offers some

reassurance. Additionally, we estimated coverage-mortality rela-

tionships for countries with higher quality vital registration,

adjusted for changes in ICD coding and year, and included

country fixed effects. Further, we identified effects of vaccination

from distinct patterns of within-country longitudinal variation in

vaccination rates, adjusting for a wide array of variables that likely

capture important variation across countries. We also found that

our results were robust to various methodological choices in a

broad array of sensitivity analyses.

The analysis used national estimates of measles deaths and

measles coverage, and therefore cannot comment on the effects of

sub-national heterogeneity. These effects likely blunt the impact of

vaccine coverage on measles reductions, particularly in larger

countries. Our use of country fixed-effects and the explicit

inclusion of other potential determinants of unequal MCV

coverage within countries aimed to mitigate this to a certain

extent.

Because of limitations in data availability, our analysis could not

include countries from Africa or the Indian subcontinent.

Differences between these countries and those in our dataset (for

example, high rates of under-nutrition in the former) limit our

ability to make precise out-of-sample projections. Additionally,

case fatality rates (CFR) may also be higher in lower-income

countries not included in our data set [29]. We used country

fixed effects and controlled for observation year to account for

difference that remained constant across countries or that changed

similarly across countries over time. We also conducted sensitivity

analyses to assess differences in findings by per-capita GDP level or

region. None of these analyses showed evidence of strong bias

(Section S1 in Appendix S1), but we suggest caution in

extrapolating to specific countries outside of our dataset.

Notwithstanding these limitations, the historical patterns

examined in this study do offer important insights relevant to

present circumstances. Specifically, they suggest that very high

coverage levels, perhaps well above 95%, sustained over

substantial periods of time, are likely needed to achieve the types

of reductions observed historically. Furthermore, our main results

suggest that the use of second doses of MCV — as an example of a

vaccination strategy that can complement higher coverage levels

— could be important, especially in countries where higher levels

of malnutrition, greater incidence of diarrhea, and resulting

weaker immunologic responses to vaccines among children are

more common.

While our goals in this study were to use historical data to

estimate a relationship between MCV coverage and measles

mortality, comparison to theoretical models is also appropriate.

Table 2. Results from logistic regression model for having no
measles deaths in children under 5 years.*

Independent variables Odds ratio
95% confidence
interval P-value

MCV coverage of 1–59% 2.743 [0.32–23.27] 0.345

MCV coverage of 60–79% 6.009 [0.66–54.38] 0.108

MCV coverage of 80–89% 13.831 [1.56–122.67] 0.020

MCV coverage of 90–94% 18.863 [2.05–173.32] 0.011

MCV coverage of $95% 40.665 [3.19–517.59] 0.005

ICD-8 coding system 0.390 [0.05–3.13] 0.365

ICD-9 coding system 0.330 [0.02–6.76] 0.461

ICD-10 coding system 0.108 [0.00–3.90] 0.216

Year 1.099 [0.96–1.26] 0.164

Two doses of MCV 1.272 [0.52–3.10] 0.588

Crude birth rate 0.045 [0.00–13.31] 0.276

Urban 0.911 [0.74–1.13] 0.381

Population density 13.768 [0.00–439,572.00] 0.611

Per-capita GDP 5.361 [0.18–160.86] 0.324

Background mortality rate 0.670 [0.32–1.40] 0.279

*Observations: 878; Countries: 38; Observations per country (min: 5; avg: 23.1;
max: 43); F: 9.2; p: ,0.0001.
6 countries accounting for 102 observations could not be included in the
logistic regression because all years had no measles deaths (Belarus and
Luxembourg) or all years had measles deaths (Guatemala, Romania,
Turkmenistan, and Venezuela).
All variables are use indicators except year which is expressed as calendar year,
urban which is expressed percentage, and crude birth rate, population density,
per-capita GDP, and background mortality rate which are all log-transformed
continuous variables.
The comparator for the odds ratios are country-years with 0% MCV coverage
using ICD-7 coding systems without a two-dose MCV course.
doi:10.1371/journal.pone.0013842.t002

Table 3. Results from linear regression model for logged
measles-specific death rates for children under 5 years.*

Independent variables Coefficient
95% confidence
interval P-value

MCV coverage of 1–59% 20.236 [21.06–0.59] 0.568

MCV coverage of 60–79% 21.639 [22.95– 20.32] 0.016

MCV coverage of 80–89% 22.298 [23.55– 21.05] 0.001

MCV coverage of 90–94% 22.576 [23.85– -1.30] 0.000

MCV coverage of $95% 22.924 [24.18– 21.67] 0.000

ICD-8 coding system 0.499 [20.33–1.33] 0.232

ICD-9 coding system 0.731 [20.95–2.41] 0.386

ICD-10 coding system 1.321 [20.63–3.28] 0.180

Year 20.117 [20.22– 20.01] 0.028

Two doses of MCV 20.396 [21.28–0.48] 0.370

Crude birth rate 3.450 [0.57–6.33] 0.020

Urban 0.078 [20.02–0.17] 0.108

Population density 21.302 [24.03–1.42] 0.340

Per-capita GDP 20.464 [22.29–1.37] 0.611

Background mortality rate 0.300 [21.68–2.28] 0.762

Constant 223.175 [17.16–429.19] 0.034

*Observations: 980; Countries: 44; Observations per country (min: 5; avg: 22.3;
max: 43); R-squared (within: 0.62; between: 0.33; overall: 0.46); F: 129.84; p:
,0.0001.
All variables are use indicators except year which is expressed as calendar year,
urban which is expressed percentage, and crude birth rate, population density,
per-capita GDP, and background mortality rate which are all log-transformed
continuous variables.
The comparator for the odds ratios are country-years with 0% MCV coverage
using ICD-7 coding systems without a two-dose MCV course.
doi:10.1371/journal.pone.0013842.t003
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Without vaccination, years with large-scale epidemics alternate

periodically with years of relatively low measles incidence [30,31].

As vaccination increases, long-run average measles incidence

declines [31]. Through herd immunity – indirect protection of

unvaccinated individuals due to interrupted chains of transmission

– measles may theoretically be eradicated below 100% vaccination

– implying percent reductions greater than MCV coverage levels.

As the proportion of the population vaccinated may be larger than

the proportion achieving immunity because of issues like spoilage,

the opposite may also be true [32]. Measles mortality – a stated

target of the MDGs – is related to vaccination via incidence

multiplied by the case fatality rate. With a constant CFR, mortality

should respond to MCV coverage increases like incidence.

However, CFR depends on a number of factors [29]. For

example, vaccination increases the average age of infection [31]. If

older children are more likely to survive, then mortality may

decline more than incidence.

Results from this analysis are broadly consistent with theoretical

relationships and previous studies. While we do not directly

observe information on interruption in chains of infection

transmission at different coverage levels, we interpret the non-

linearities in the relationship between coverage and mortality as an

indication of herd immunity. A study of measles immunity in

Europe in the pre-vaccine era found that the theoretical

proportion needed to vaccinate at birth to achieve eradication

was between 86% and 97%, suggesting modest herd immunity

effects [33,34]. Similarly, we found that the proportion of country-

years with no observed measles deaths increased sharply at such

coverage levels. Consistent with these findings, we estimated that

the benefits of herd immunity are modest with reduction in

measles deaths a few percentage higher than MCV coverage levels

in the 45–90% coverage range. For MCV coverage below 45%,

reductions in deaths actually lag behind increases in coverage. As

this finding is consistent with the potential failure of vaccination to

provoke sufficient immunity in all children, further emphasis on

vaccination program quality, 2-dose MCV courses, and supple-

mental immunization activities is warranted in countries scaling-

up from low coverage levels.

Sustaining high measles coverage has value in developed and

developing countries. The majority of measles deaths occurs in

resource-poor countries [28]. Simulation studies illustrate the

importance of measles vaccination in these populations [6,35,36],

with estimated benefits similar to our findings. Studies also

highlight the importance of program quality and supplemental

immunization activities. In developed countries, vulnerability to

renewed measles epidemics exists despite longstanding vaccination

programs [37].

Measles vaccination is a cornerstone of preventing childhood

mortality. In over 40 years of worldwide experience with measles

vaccination, impressive reductions in measles incidence and

mortality have been achieved through sustained population

coverage levels above 90%. Given the challenges of sustaining

high measles coverage in countries currently facing large measles

burdens, a combination of extended vaccine programs and

supplementary vaccine efforts should be pursued.

Supporting Information

Appendix S1 Supplemental appendix with supporting informa-

tion.

Found at: doi:10.1371/journal.pone.0013842.s001 (0.35 MB

PDF)

Figure 1. Estimated changes in measles-specific mortality rates for children under 5 years old with increasing MCV coverage. Shown
in the graph is the percentage change in measles-specific mortality rates in children under 5 years associated with increasing MCV coverage to 90%
(Panel A), 95% (Panel B), and 99% (Panel C) from different starting MCV coverage levels (solid colored bars – interquartile ranges; black vertical lines –
5th to 95th percentile ranges).
doi:10.1371/journal.pone.0013842.g001

Vaccination and Measles Deaths

PLoS ONE | www.plosone.org 5 November 2010 | Volume 5 | Issue 11 | e13842



Acknowledgments

We gratefully acknowledge valuable discussions with Jay Bhattacharya and

Grant Miller, and helpful comments from David Bishai.

Author Contributions

Conceived and designed the experiments: JDGF ML AMZ JAS.

Performed the experiments: JDGF. Analyzed the data: JDGF ML AM

AMZ JAS. Wrote the paper: JDGF JAS. Contributed to revision of the

manuscript: ML AM AMZ.

References

1. US Preventive Services Task Force (2010) Screening for Obesity in Children and

Adolescents: US Preventive Services Task Force Recommendation Statement:

US Preventive Services Task Force Description Update of the 2005 US

Preventive Services Task Force (USPSTF) statement about screening for

overweight in children and adolescents. Pediatrics 125: 361–367.

2. (2009) Global reductions in measles mortality 2000–2008 and the risk of measles

resurgence. Wkly Epidemiol Rec 84: 509–516.

3. (2008) Progress in global measles control and mortality reduction, 2000–2007.

MMWR Morb Mortal Wkly Rep 57: 1303–1306.

4. Bryce J, Terreri N, Victora CG, Mason E, Daelmans B, et al. (2006) Countdown

to 2015: tracking intervention coverage for child survival. Lancet 368:

1067–1076.

5. Murray CJ, Laakso T, Shibuya K, Hill K, Lopez AD (2007) Can we achieve

Millennium Development Goal 4? New analysis of country trends and forecasts

of under-5 mortality to 2015. Lancet 370: 1040–1054.

6. Wolfson LJ, Strebel PM, Gacic-Dobo M, Hoekstra EJ, McFarland JW, et al.

(2007) Has the 2005 measles mortality reduction goal been achieved? A natural

history modelling study. Lancet 369: 191–200.

7. Fine PE (1993) Herd immunity: history, theory, practice. Epidemiol Rev 15:

265–302.

8. Keeling MJ, Grenfell BT (1997) Disease extinction and community size:

modeling the persistence of measles. Science 275: 65–67.

9. (2004) Measles vaccines: World Health Organization Position Paper. Weekly

epidemiological record 79: 129–144.

10. Hutchins SS, Dezayas A, Le Blond K, Heath J, Bellini W, et al. (2001)

Evaluation of an early two-dose measles vaccination schedule. Am J Epidemiol

154: 1064–1071.

11. Anand S, Barnighausen T (2004) Human resources and health outcomes: cross-

country econometric study. Lancet 364: 1603–1609.

12. Bloom DE, Canning D (2000) Policy forum: public health. The health and

wealth of nations. Science 287: 1207, 1209.

13. Filmer D, Pritchett L (1999) The impact of public spending on health: does

money matter? Soc Sci Med 49: 1309–1323.

14. Flegg AT (1982) Inequality of income, illiteracy and medical care as

determinants of infant mortality in underdeveloped countries. Popul Stud

(Camb) 36: 441–458.

15. Murray ET, Roux AVD, Carnethon M, Lutsey PL, Ni H, et al. (2010)

Trajectories of Neighborhood Poverty and Associations With Subclinical

Atherosclerosis and Associated Risk Factors. American Journal of Epidemiology

171: 1009–1108.

16. Mathers CD, Fat DM, Inoue M, Rao C, Lopez AD (2005) Counting the dead

and what they died from: an assessment of the global status of cause of death

data. Bull World Health Organ 83: 171–177.

17. WHO/UNICEF Estimates on Immunization Coverage 1980–2007. WHO/

UNICEF.

18. Anand S, Barnighausen T (2007) Health workers and vaccination coverage in
developing countries: an econometric analysis. Lancet 369: 1277–1285.

19. Burton A, Monasch R, Lautenbach B, Gacic-Dobo M, Neill M, et al. (2009)
WHO and UNICEF estimates of national infant immunization coverage:

methods and processes. Bull World Health Organ 87: 535–541.

20. World Health Organization: year of introduction of selected vaccines. World
Health Organization.

21. (2008) World Bank: World Development Indicators. The World Bank.
22. The United Nations: World Population Prospects - The 2006 Reviison. The

United Nations.
23. Heston A, Summers R, Aten B (2006) Penn World Tables, version 6.2.

24. Wooldridge JM (2003) Introductory econometrics: a modern approach.

Australia; Cincinnati, Ohio: South-Western College Pub. pp xxvii, 863.
25. Keele L (2008) Semiparametric regression for the social sciences. Chichester,

England; Hoboken, NJ: Wiley. pp xvi, 213.
26. Akaike H (1974) A new look at the statistical model identification. IEEE

Transactions on Automatic Control 19: 716–723.

27. Schwarz G (1978) Estimating the dimension of a model. Annals of Statistics 6:
461–464.

28. Measles Initiative. Measles Initiative.
29. Wolfson LJ, Grais RF, Luquero FJ, Birmingham ME, Strebel PM (2009)

Estimates of measles case fatality ratios: a comprehensive review of community-
based studies. Int J Epidemiol 38: 192–205.

30. Grenfell BT, Bjornstad ON, Kappey J (2001) Travelling waves and spatial

hierarchies in measles epidemics. Nature 414: 716–723.
31. Keeling MJ, Rohani P (2008) Modeling infectious diseases in humans and

animals. Princeton: Princeton University Press. pp xi, 366.
32. McLean AR, Blower SM (1995) Modelling HIV vaccination. Trends Microbiol

3: 458–462.

33. de Melker H, Pebody RG, Edmunds WJ, Levy-Bruhl D, Valle M, et al. (2001)
The seroepidemiology of measles in Western Europe. Epidemiol Infect 126:

249–259.
34. Edmunds WJ, Gay NJ, Kretzschmar M, Pebody RG, Wachmann H (2000) The

pre-vaccination epidemiology of measles, mumps and rubella in Europe:

implications for modelling studies. Epidemiol Infect 125: 635–650.
35. Bauch CT, Szusz E, Garrison LP (2009) Scheduling of measles vaccination in

low-income countries: projections of a dynamic model. Vaccine 27: 4090–4098.
36. Ferrari MJ, Grais RF, Bharti N, Conlan AJ, Bjornstad ON, et al. (2008) The

dynamics of measles in sub-Saharan Africa. Nature 451: 679–684.
37. Andrews N, Tischer A, Siedler A, Pebody RG, Barbara C, et al. (2008) Towards

elimination: measles susceptibility in Australia and 17 European countries. Bull

World Health Organ 86: 197–204.

Vaccination and Measles Deaths

PLoS ONE | www.plosone.org 6 November 2010 | Volume 5 | Issue 11 | e13842


