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Comparing auction designs where suppliers
have uncertain costs and uncertain pivotal
status
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and

Frank A. Wolak∗∗

We analyze how market design influences bidding in multiunit procurement auctions where
suppliers have asymmetric information about production costs. Our analysis is particularly
relevant to wholesale electricity markets, because it accounts for the risk that a supplier is
pivotal; market demand is larger than the total production capacity of its competitors. With
constant marginal costs, expected welfare improves if the auctioneer restricts offers to be flat. We
identify circumstances where the competitiveness of market outcomes improves with increased
market transparency. We also find that, for buyers, uniform pricing is preferable to discriminatory
pricing when producers’ private signals are affiliated.

1. Introduction

� Multiunit auctions are used to trade commodities, securities, emission permits, and other
divisible goods. This article focuses on electricity markets, where producers submit offers before
the level of demand and amount of available production capacity are fully known. Due to demand
shocks, unexpected outages, transmission-constraints, and intermittent output from renewable
energy sources, it often arises that an electricity producer is pivotal, that is, that realized demand
is larger than the realized total production capacity of its competitors. A producer that is certain
to be pivotal possess a substantial ability to exercise market power because it can withhold output
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and push the price up to the reservation price of the consumers. We are interested in how such
markets perform and how they are influenced by the auction design. Most electricity markets
use uniform pricing, where the highest accepted offer sets the transaction price for all accepted
production. A few markets, such as the British real-time market, use discriminatory pricing,
where each accepted offer is instead paid its own offer price.1 There have been calls to switch
from uniform to discriminatory pricing in a number of electricity markets (Kahn et al., 2001).

Our model accounts for asymmetric information in suppliers’ production costs. Our analysis
is, for example, of relevance for European wholesale electricity markets, where the European
Commission has introduced regulations that increase the market transparency, so that uncertain-
ties and information asymmetries are reduced.2 Long before delivery, in forward markets, the
uncertainty about future fuel prices is to a large extent a common uncertainty among producers.
The relative size of this common uncertainty typically decreases closer to the delivery. In the
electricity spot market, an owner of a thermal plant has private information about the actual price
paid for its input fuel. Daily natural gas prices can have large uncertainties due to local conges-
tion and local storage constraints in gas pipelines. These circumstances can be even more severe
in regions with significant amounts of intermittent wind and solar generation capacity, because
natural gas units must make up for any renewable energy shortfall relative to system demand.
Moreover, the owner of a thermal plant has private information about the efficiency of its plant,
which depends on the ambient temperature, and how the plant is maintained and operated.

The cost uncertainty and the information asymmetry between firms can also be significant
in hydro-dominated markets. The opportunity cost of using water stored in the reservoir behind
a specific generation unit is normally estimated by solving a stochastic dynamic program based
on estimates of the probability distribution of future water inflows and future offer prices of
thermal generation units. These firm-specific estimated opportunity costs typically have a sig-
nificant common component across suppliers. The stochastic simulations also leaves significant
scope for differences across market participants in their estimates of the generation unit-specific
opportunity cost of water. The uncertainty in this opportunity cost is exacerbated by the possibil-
ity of regulatory intervention, especially during extreme system conditions, and each producer’s
subjective beliefs about the probability of these events occurring during the planning period.

Our model of an electricity market with asymmetric information about supplier costs assumes
a multiunit auction with two capacity-constrained producers facing an inelastic demand. Each
producer also has an uncertain amount available of generation capacity that is realized after offers
are submitted. Demand is also uncertain and realized after offers have been submitted. Both of
these sources of uncertainty and when they are realized is consistent with how spot electricity
markets operate. Similar to the electricity market model by von der Fehr and Harbord (1993), each
firm has a flat marginal cost (independent of output) up to the capacity constraint and must make
a flat offer. This is also similar to the Colombian electricity market, where each supplier chooses
one offer price for the entire capacity of each generation unit (Wolak, 2009). We generalize
von der Fehr and Harbord (1993) by introducing uncertain interdependent costs. Analogous to
Milgrom and Weber’s (1982) auction for single objects as well as Ausubel et al.’s (2014) and
Vives’ (2011) models of multiunit auctions, each firm makes its own estimate of production costs
based on the private information that it receives, and then submits an offer.3 As is customary
in game theory, we refer to this private information as a private signal. We solve for a unique

1 In addition, some special auctions in the electricity market, such as counter-trading in the balancing market and/or
the procurement of power reserves, sometimes use discriminatory pricing (Holmberg and Lazarczyk, 2015; Anderson,
Holmberg, and Philpott, 2013).The US Treasury is an important exception, but otherwise most treasury auctions around
the world use discriminatory pricing (Bartolini and Cottarelli, 1997; Brenner, Galai, and Sade, 2009).

2 According to EU No. 543/2013, the hourly production in every single plant should be published. EU No. 1227/2011
(REMIT) mandates all electricity market participants to disclose insider information, such as the scheduled availability
of plants.

3 Milgrom and Weber (1982) and Ausubel et al. (2014) analyze sales auctions, so in their settings, each agent
estimates the value of the good that the auctioneer is selling.
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Bayesian Nash Equilibrium (BNE) when signals are drawn from a bivariate distribution that is
known to the suppliers.

In our setting with flat marginal costs, inelastic demand, and ex ante symmetric producers,
the bid constraint that offers must also be flat improves expected welfare. A comparison of our
results to Vives (2011) suggests that the bid constraint is particularly beneficial for uniform-price
auctions where producers have large common uncertainties in their costs. This is mainly relevant
for uniform-price auctions of forward contracts and hydro-dominated electricity markets, where
the opportunity cost has a significant common uncertainty and is approximately flat for a wide
range of outputs.4

For an auction with our bid constraint, we show that the auctioneer would prefer uniform
to discriminatory pricing if signals of producers are affiliated. This is related to Milgrom and
Weber’s (1982) ranking of first- and second-price single-object auctions. In the special case where
signals are independent, we find that the two auction formats are revenue-equivalent. This is a
generalization of revenue-equivalence results for single-object auctions by Myerson (1981) and
Riley and Samuelson (1981). Our results also generalize Fabra, von der Fehr, and Harbord (2006),
who prove revenue equivalence for our setting when costs are common knowledge.

Equilibrium offers in a discriminatory auction are determined by the expected sales of
the highest and lowest bidder, respectively. A smaller difference between these sales means
that both producers are pivotal by a larger margin and equilibrium offers increase. Under our
modelling assumptions, the variance in sales after offers have been submitted—due to demand
shocks, outages and intermittent renewable production—will not influence the bidding behavior
of producers or their expected payoffs in the discriminatory auction. Results are similar for
uniform-price auctions, but equilibrium offers in that auction are more sensitive to the variance
in sales. The variance in sales due to demand shocks and outages does not influence the ranking
of auctions.

We extend our basic model to consider the case that the auctioneer has private cost-relevant
information that it can disclose to the two suppliers. For a discriminatory auction, we can show
that the auctioneer would benefit from disclosing its information, if its signal and the producers’
signals are all affiliated. Intuitively, this should also hold for uniform-price auctions, but in
this case, we are only able to prove this when the signals of producers are independent. This
is related to the publicity effect that was proven by Milgrom and Weber (1982) for single-
object auctions. Vives (2011) finds that markups decrease when nonpivotal producers receive
less noisy cost information before competing in a uniform-price auction. It is known from
Perry and Reny (1999) that the publicity effect may not hold in multiunit auctions. Still, taken
together, these results suggest that publicly available information of relevance for production
costs—such as fuel prices, prices of emission permits, and water levels in reservoirs—is likely
to improve the competitiveness of market outcomes in electricity markets. Similarly, disclosing
detailed historical bid data and/or detailed production data are likely to make production costs
more transparent.5 In addition, information provision about outcomes from financial markets just
ahead of the operation of related physical markets should lower the market uncertainty. Similarly,
trading of long-term contracts, which help producers predict future electricity prices, should
reduce the extent of informational asymmetries among suppliers about the opportunity cost of
water.

Extending this logic further, our results suggest that regulatory risks that increase information
asymmetries among players about the opportunity cost of water are particularly harmful for
competition in hydro-dominated wholesale electricity markets, especially when water is scarce.
Thus, we recommend clearly defined contingency plans for intervention by the regulator in case of

4 Analogously, bidders’ marginal valuation of securities is fairly insensitive to the purchased volume and often have
a large common value component. This indicates that bid constraints have the potential to increase welfare and auction
sales revenues in uniform-price security auctions.

5 Note that disclosure of individual offers would give detailed information on all plants, not only the marginal plant,
for every auction outcome.
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extreme system conditions. This could potentially mitigate the extraordinarily high-priced periods
that typically accompany low-water conditions in hydro-dominated markets, as has occurred in
California, Colombia, and New Zealand.

Because increased transparency reduces the payoff of producers in our model, we would not
expect producers to agree to voluntarily disclose production cost-relevant information. This has
similarities to Gal-Or (1986) who shows that producers that play a Bertrand equilibrium would
try to conceal their private costs from each other. Moreover, increased transparency would only
be helpful up to a point, because there is a lower bound on equilibrium markups when a producer
is pivotal. Another caveat is that we only consider a single-shot game. As argued by von der Fehr
(2013), there is a risk that increased transparency in European electricity markets can facilitate
tacit collusion in a repeated game.

Our study focuses on procurement auctions, but the results are analogous for multiunit
sales auctions. Purchase constraints in sales auctions correspond to production capacities in our
setting.6 Analogous to the demand uncertainty in our model, the auctioneer’s supply of securities
is sometimes uncertain when bids are submitted in a multiunit sales auction.7

The remainder of the article is organized as follows. Section 2 compares details in our
model with the previous literature. Section 3 formally introduces our model, which is analyzed
for auctions with discriminatory and uniform pricing in Section 4. Section 5 summarizes our
main results and their broader implications for auction market design. All proofs are in the
Appendix.

2. Comparison with related studies

� In this section, we discuss the major aspects of multiunit auction market design that our
analysis builds on (i) bid constraints, (ii) asymmetric information, (iii) uniqueness of equilibria,
(iv) comparisons of uniform-price and discriminatory auctions, and (v) pivotal producers in
electricity markets.

� Related literature on bid constraints. Electricity markets and other multiunit auctions
often have restrictions on how many offer prices each producer can submit or, equivalently, how
many steps a producer is allowed to have in its supply function. Similar to models of electricity
markets by von der Fehr and Harbord (1993), Fabra, von der Fehr, and Harbord (2006), Fabra, von
der Fehr, and de Frutos (2011) and Banal-Estanol and Micola (2009), we make the simplifying
assumption that offers must be flat; a producer must offer its entire production capacity at the same
price. In addition, we generalize the setting to cases where production costs are uncertain and
asymmetric information among suppliers. Our model also generalizes Parisio and Bosco (2003),
which is restricted to producers with flat offers and independent private costs in uniform-price
auctions.

More generally, our analysis of symmetric BNE could also be applied to situations where
each producer has multiple production plants and chooses a different offer price for each plant.
This extension is straightforward if the market uncertainty is so small that each producer has
only one plant (the same plant) that can be price-setting (marginal) with a positive probability in

6 As an example, US treasury auctions have the 35% rule, which prevents a single bidder from buying more than
35% of the securities sold. Similar rules are used in spectrum auctions by the Federal Communications Commission
(FCC) and in California’s auctions of greenhouse gas emission allowances.

7 In Mexico, Finland, and Italy, the treasury sometimes reduces the quantity of issued bonds after the bids have been
received (McAdams, 2007). In treasury auctions in the United States, there is often an uncertain amount of noncompetitive
bids from many small nonstrategic investors (Wang and Zender, 2002; Rostek, Weretka, and Pycia, 2010). Initial Public
Offerings (IPO)s sometimes incorporate the so-called Greenshoe Option, which allow issuing firms to increase the amount
of shares being offered by up to 15% after the bids have been submitted (McAdams, 2007).
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equilibrium.8 Hence, there is essentially only one offer per producer that matters.9 A problem with
such a multiplant extension is that nonuniqueness of equilibria becomes an issue when market
uncertainties are small in a uniform-price auction. For example, in a related multiplant extension
for a uniform-price auction where costs that are common knowledge, Fabra, von der Fehr, and
Harbord (2006) derive another type of equilibrium, the asymmetric high-price NE. Uniqueness
should be less of an issue in a discriminatory auction.10

Our bid constraint makes the discriminatory auction identical to a Bertrand game with both
uncertain demand and costs. Thus, our framework encompasses the Bertrand models by Gal-Or
(1986) and Spulber (1995), which consider producers with independent private costs.

In order to facilitate comparisons with previous studies, we are also interested in results
for the limit where the cost uncertainty decreases until the costs are common knowledge. For
producers that are both nonpivotal with certainty, we get the competitive outcome with zero
markups, both for uniform and discriminatory pricing. This result agrees with the competitive
outcomes for nonpivotal producers in von der Fehr and Harbord (1993) and in Fabra, von der Fehr,
and Harbord (2006). If signals are independent and both producers are pivotal, it follows from
Harsanyi’s (1973) Purification Theorem that in the limit when costs are common knowledge,
our BNE for uniform-price and discriminatory auctions correspond to the mixed-strategy NE
analyzed by Anderson, Holmberg, and Philpott (2013), Anwar (2006), Fabra, von der Fehr, and
Harbord (2006), Genc (2009), Son et al. (2004), and von der Fehr and Harbord (1993). Analogous
mixed-strategy NE also occur in the Bertrand-Edgeworth game, when at least one producer is
pivotal (Edgeworth, 1925; Allen and Hellwig, 1986; Beckmann, 1967; Levitan and Shubik, 1972;
Maskin, 1986; Vives, 1986; Deneckere and Kovenock, 1996; Osborne and Pitchik, 1986).

Another consequence of the bid constraint is that uniform and discriminatory pricing are
equivalent when both producers are nonpivotal with certainty, that is, when the capacity of each
producer is always larger than realized demand. Independent of the auction format, the payoff is
then zero for the producer with the highest offer price, and the other producer is paid its own offer
price. This corresponds to the first-price single-object auction that is studied by Milgrom and
Weber (1982). We generalize their model to the case where producers are pivotal with a positive
probability, as can be the case in electricity markets.

� Asymmetric information in multiunit auctions. Similar to us, Ausubel et al. (2014)
and Vives (2011) consider multiunit auctions with asymmetric information, but they focus on
producers that are nonpivotal with certainty. Moreover, we differ from them because we assume
that offers must be flat.

If producers have asymmetric information about flat marginal costs, then it follows from
Ausubel et al. (2014) that auctions can only be efficient if offers are also flat. The reason is that
an efficient auction must accept the whole capacity of the low-cost bidder before any supply is
accepted from the high-cost bidder, even if the difference in their realized flat marginal cost is
arbitrarily small. Ausubel et al. (2014) identify special cases where unconstrained equilibrium
offers are flat and allocations are efficient for the discriminatory auction. They also show that a
uniform-price auction with unconstrained offers is generically inefficient. We require offers to
be flat, which results in efficient auction outcomes (given aggregated market information) for
symmetric equilibria in markets with inelastic demand and flat marginal costs, both for uniform

8 Let n denote the production plant that is marginal/price-setting with a positive probability. As long as offers from
units u ≥ n + 1 are not accepted in equilibrium, all of those units can be offered at the lowest marginal cost realization
of the unit n + 1, which would give a reservation price for unit n.

9 Note that the discriminatory auction is different in that all accepted offers are price-setting (paid as bid). Still, it
would be optimal for a producer to submit all offers that are certain to be accepted at the same price as the potentially
marginal plant.

10 A discriminatory multiplant auction should have a unique BNE if the highest marginal cost realization of the
potentially marginal plant is equal to the lowest marginal cost realization for the next plant in the merit order, which
corresponds to a reservation price.
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and discriminatory pricing. Typically, unconstrained equilibrium offers in discriminatory auctions
would be flatter (more elastic with respect to the price) than in uniform-price auctions (Genc, 2009;
Anderson, Holmberg, and Philpott, 2013; Ausubel et al., 2014). Therefore, we conjecture that
our bid constraint will have a greater positive influence on market performance in uniform-price
auctions.

Related to the above, the results in Vives (2011) illustrate that the lack of bid constraints
can have anticompetitive consequences in uniform-price auctions. In an auction where the costs
are affiliated, a high clearing price is bad news for a firm’s costs, because this increases the
probability that the competitor has received a high-cost signal. Ausubel (2004) refers to this as
the Generalized winner’s curse or Champion’s plague. As illustrated by Vives (2011), a producer
therefore has an incentive to reduce its output when the price is unexpectedly high and increase
its output when the price is unexpectedly low. This will make supply functions steeper or even
downward sloping in auctions with nonrestrictive bidding formats, and this will significantly harm
competition. If costs have a large common uncertainty, then markups in a uniform-price auction
can be as high as for the monopoly case (Vives, 2011). Our restrictive bidding format avoids
this problem. The bid constraint gives a producer less flexibility to condition its output on the
competitor’s information, and less possibilities to hedge the offer with respect to the Generalized
winner’s curse. It does not matter how sensitive a producer’s cost is to the competitor’s signal, our
results are essentially the same irrespective of whether the costs are private, common, or anything
in between those two extremes. Related results have been found in the literature on single-object
auctions (Milgrom and Weber, 1982).

� Uniqueness of equilibria. As, for example, illustrated by Wilson (1979), Klemperer and
Meyer (1989), Green and Newbery (1992), and Ausubel et al. (2014), there are normally multiple
NE in divisible-good auctions when some offers are never price-setting. The bid constraint
mitigates this problem. In our setting, there is a unique equilibrium in the discriminatory auction
also for a given demand level and given production capacities. In the uniform-price auction we
get uniqueness, unless both producers are pivotal with certainty. Our uniqueness results have
some parallels with Lizzeri and Perisco (2000). They find that uniqueness can normally only be
ensured in single-object auctions where the payoff of the winning supplier is strictly increasing
in its offer.11 In our setting, this condition is always satisfied for the discriminatory auction. It is
also satisfied for the uniform-price auction, unless both producers are pivotal with certainty.

Uniqueness of equilibria is another reason why highly anticompetitive equilibria in uniform-
price auctions can be avoided. In the special case where both producers are pivotal with certainty,
there is, in addition to the symmetric BNE that we calculate, also an asymmetric high-price
equilibrium (von der Fehr and Harbord, 1993) in the uniform-price auction. This equilibrium is
very unattractive for consumers of electricity, because the highest offer, which sets the clearing
price, is always at the reservation price.12

� Comparisons of uniform-price and discriminatory auctions. The bid constraint and the
assumption that the pivotal status of producers is uncertain give a unique equilibrium. As far as
we know, we are the first to compare designs of multiunit auctions with asymmetric information
for settings with unique equilibria. In our setting, we find that an auctioneer would prefer uniform
to discriminatory pricing if signals are affiliated, which is related to Milgrom and Weber’s (1982)
results for first- and second-price single-object auctions. We believe that our ranking of multiunit
auctions is partly driven by our bid constraint, which seems to be particularly beneficial for

11 Lizzeri and Perisco (2000) consider a sales auction, so actually their uniqueness condition is that the payoff of
the winning bidder should be strictly decreasing in its bid. Lizzeri and Perisco (2000) consider a general single-object
auction, where the loser could also get a payoff, but the payoff of the loser is restricted to be nonpositive. In our setting,
the loser would also get a positive payoff in equilibrium.

12 The equilibrium offer from the low-price bidder must be sufficiently low to ensure that the high-price bidder
would not find it profitable to deviate and undercut the low-price bidder.
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uniform-price auctions. Previous studies suggest that rankings of multiunit auctions become more
ambiguous if one does not require offers to be flat. Holmberg (2009) and Hästö and Holmberg
(2006) identify circumstances where discriminatory pricing is preferable to uniform pricing
from the auctioneer’s perspective. Pycia and Woodward (2015) identify circumstances when the
auctions are equivalent. Ausubel et al. (2014) show that uniform pricing can be better or worse for
the auctioneer. Our assumption that the pivotal status of producers is uncertain means that the high-
price equilibrium can be avoided in the uniform-price auction. Otherwise, if this equilibrium exists
and is selected by producers, then the auctioneer would prefer discriminatory pricing (Fabra, von
der Fehr, and Harbord, 2006). Empirical studies by Armantier and Sbaı̈ (2006,2009) and Hortaçsu
and McAdams (2010) find that the treasury would prefer uniform pricing in France and Turkey,
respectively, whereas Kang and Puller (2008) find that discriminatory pricing would be best for
the treasury in South Korea. Given that our results suggest that details in the bidding format are
important for the ranking of auctions, we think that future empirical rankings of multiunit auction
designs could potentially benefit from considering even more details in the bidding format, as in
the structural models of bidding behavior by Wolak (2007) and Kastl (2012).

� Pivotal producers in electricity markets. In practice, the number of pivotal producers in
wholesale electricity markets depends on the season and the time-of-day (Genc and Reynolds,
2011), but also on market shocks. Pivotal status indicators as measures of the ability to exercise
unilateral market power have been evaluated by Bushnell, Knittel, and Wolak (1999) and Twomey
et al. (2005) and have been applied by the Federal Energy Regulator Commission (FERC) in its
surveillance of electricity markets in the United States. Such binary indicators are supported by
von der Fehr and Harbord’s (1993) high-price equilibrium in uniform-price auctions, where the
market price is either at the marginal cost of the most expensive supplier or the reservation price,
depending on whether producers are nonpivotal or pivotal with certainty. Our equilibrium is more
subtle, the pivotal status can be uncertain before offers are submitted, and the expected market
price increases continuously when producers are expected to be pivotal with a larger margin.
Thus, in our setting, a high pivotal bidder frequency (PBF) is not a problem by itself, unless there
are outcomes where a producer is pivotal by a large margin.

3. Model

� Our model has two risk-neutral producers. They are symmetric ex ante, before each producer
i ∈ {1, 2} receives a private signal si ∈ [s, s] with imperfect cost information. The joint probability
density of signals χ (si , s j ) is continuously differentiable and symmetric, so that χ (si , s j ) ≡
χ (s j , si ). Moreover, χ (si , s j ) > 0 for (si , s j ) ∈ (s, s) × (s, s).13

As in von der Fehr and Harbord (1993), we consider the case when each firm’s marginal cost
is flat up to its production capacity constraint qi .

14 However, in our setting, marginal costs are
uncertain when offers are submitted. This is a realistic assumption for electricity markets, where
real-time weather conditions can impact the thermal efficiency of fossil-fuel generation units or
the opportunity cost of water for a hydroelectric, facility. We refer to ci (si , s j ) as the marginal
cost of producer i , but costs are not necessarily deterministic, given si and s j . More generally,
ci (si , s j ) is the expected marginal cost conditional on all information available among producers
in the market, so that

ci

(
si , s j

) = E
[

c̃i | si , s j

]
,

where c̃i is the realized marginal cost of producer i . We assume that

∂ci

(
si , s j

)
∂si

> 0, (1)

13 We do not require χ (si , s j ) > 0 at the boundary, but χ1(u,s)
χ(u,s)

= χ2(s,u)
χ(s,u)

is assumed to be bounded for u ∈ [s, s].
14 This corresponds to flat demand in the sales auction of Ausubel et al. (2014).
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so that the marginal cost of firm i increases with respect to its own signal si . We also require that
the firm’s cost is weakly increasing with respect to the competitor’s signal s j :

∂ci

(
si , s j

)
∂s j

≥ 0. (2)

A firm’s private signal has more influence on its own cost than on the competitor’s cost15:

∂ci

(
si , s j

)
∂si

>
∂c j

(
s j , si

)
∂si

. (3)

Taken together, (1) and (2) imply that:

dci (s, s)

ds
> 0. (4)

The special case with independent signals and ∂ci (si ,s j )

∂s j
= 0 corresponds to the private independent

cost assumption, which is used in the analysis by Parisio and Bosco (2003) and Spulber (1995).
Wilson (1979) uses a common cost/value assumption. Our model approaches this case in the limit
where ∂ci (si ,s j )

∂si
− ∂c j (s j ,si )

∂si
↘ 0.

Costs are insensitive to both signals in the limit when costs are common knowledge. For our
BNE, it turns out that bidding behavior is determined by properties of the cost function along its
diagonal, where producers receive identical private information. Thus, for us, it is sufficient to
define a weaker form of common knowledge about costs. Let c = ci (s, s).

Definition 1. Production costs are insensitive to common variations in signals in the limit where
ci (s, s) ↘ c for s ∈ [s, s).

The production capacity qi of a firm could be certain, as in von der Fehr and Harbord (1993),
but we also allow qi to be uncertain when offers are submitted. Uncertain production capacities
would be consistent with the fact that generation units can have partial or complete outages after
offers are first submitted and before units are called to operate. The production capacities of
the two producers could be correlated, but they are symmetric information and we assume that
they are independent of production costs and signals.16 Capacities are symmetric ex ante, so that
E[qi ] = E[q j ]. Realized production capacities are assumed to be observed by the auctioneer
when the market is cleared.17 This assumption is consistent with a must-offer requirement (which
exists in most US wholesale markets) that requires a supplier to offer all available capacity in the
wholesale market at or below the reservation price.

As in von der Fehr and Harbord (1993), demand is inelastic up to a reservation price p.
Moreover, demand is uncertain with compact support, D ∈ [D, D]. It could be correlated with
the production capacities, but demand is assumed to be independent of the production costs
and signals. In addition, it is assumed that all outcomes are such that 0 ≤ D ≤ qi + q j , so that
there is always enough production capacity in the market to meet the realized demand. Many
wholesale electricity markets have a long-term resource adequacy process that makes sure that
this condition holds. We say that producer i 	= j is pivotal for outcomes where D > q j . Thus, a
pivotal producer will have a strictly positive output irrespective of whether its offer is highest or
lowest. Otherwise, the producer is nonpivotal. Due to uncertainties in demand and/or production
capacities, the pivotal status of a producer is generally uncertain when it submits its offer.

15 Note that we use the convention that a firm’s own signal is placed first in its list of signals.
16 In Europe, this assumption could be justified by the fact that any insider information on production capacities

must be disclosed to the market according to EU No. 1227/2011 (REMIT).
17 Alternatively, similar to the market design of the Australian wholesale market, producers could first choose bid

prices and later adjust the quantity increments associated with each bid price just before the market is cleared. We assume
that the reported production capacities are publicly verifiable, so that bidders cannot choose them strategically.
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Analogous to Milgrom and Weber (1982), we assume that the reservation price is set at the
smallest price, which ensures that there is production, that is, p = ci (s, s) for i ∈ {1, 2}. Note that
we stick to this assumption even in the limit where production costs are insensitive to common
variations in signals. Thus in this limit, ci (s, s) would jump from c to p as s approaches s.

A firm i ∈ {1, 2} submits its offer after it has received its private signal si . We assume that
the bidding format constrains offers such that each firm must offer its entire production capacity
at one unit price pi (si ). The auctioneer accepts offers in order to minimize its procurement cost.
Thus, output from the losing producer, which has the highest offer price, is only accepted when
that firm is pivotal, and in that case, the auctioneer first accepts the entire production capacity
from the winning producer, which has the lowest offer price.

Ex post, we denote the winning producer, which gets a high expected output, by subscript H .
The losing producer, which gets a low expected output, is denoted by the subscript L . Winning
and losing producers have the following expected outputs18:

qH = E [min (q H , D)] (5)

and

qL = E [max (0, D − q H )] . (6)

Given signals, the expected payoff of each producer is given by its expected revenue minus
its expected production cost.

πL = (pL − cL (sL, sH )) qL

πH = (pH − cH (sH , sL)) qH .

Accepted offers in a discriminatory auction are paid as bid, that is, pH is equal to the offer of the
winning producer and pL is equal to the offer of the losing producer. In the uniform-price auction,
we have that pH = pL , and this price is set by the losing producer if it is pivotal. Otherwise, pH

is set by the offer of the winning producer, and no supply is accepted from the losing firm.
We assume that producers are risk-neutral and that each producer chooses its offer in order

to maximize its expected profit, given its signal. We solve for the BNE in a one-shot game, where
pi (si ) is weakly monotonic and piece-wise differentiable.

In our analysis, we make use of the concept affiliated signals. Signals are affiliated when

χ (u, v′)

χ (u, v)
≤ χ (u ′, v′)

χ (u ′, v)
, (7)

where v′ ≥ v and u ′ ≥ u. Thus, if the signal of one player increases, then it (weakly) increases
the probability that its competitor has a high signal relative to the probability that its competitor
has a low signal. We say that signals are negatively affiliated when the opposite is true, that is,

χ (u, v′)

χ (u, v)
≥ χ (u ′, v′)

χ (u ′, v)
, (8)

where v′ ≥ v and u ′ ≥ u. Note that independent signals are both affiliated and negatively affiliated.
We let

F (si ) =
∫ si

−∞

∫ ∞

−∞
χ (u, v) dvdu

18 A rationing rule is used when producers submit offers at the same price and realized demand is strictly less than
the realized market capacity. The details of the rule does not influence our results, as long as the rationing rule is such
that, whenever rationing is needed, any producer would get a significantly larger output, an increment bounded away
from zero, if it reduced its offer price by any positive amount. As an example, the pro-rata-on-the-margin rule, which is
a standard rationing rule in multiunit auctions (Kremer and Nyborg, 2004), would satisfy these properties, and so would
the large class of disproportionate rationing rules that is considered by Holmberg (2017).
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denote the marginal distribution, that is, the unconditional probability that supplier i receives a
signal below si . Moreover, we define the marginal density of firm i’s signal as:

f (si ) = F ′ (si ) .

4. Analysis

� Discriminatory pricing. We start the section on discriminatory pricing by deriving the
best response of firm i ∈ {1, 2}. We denote the competitor by j 	= i . Recall that each firm is
paid as bid under discriminatory pricing and demand uncertainty, and the production capacity
uncertainties are independent of the cost uncertainties. Thus, the expected profit of firm i when
receiving signal si is:

πi (si ) = (
pi (si ) − E

[
c̃i | si , pj ≥ pi

])
Pr
(

pj ≥ pi

∣∣ si

)
qH

+ (
pi (si ) − E

[
c̃i | si , pj ≤ pi

]) (
1 − Pr

(
pj ≥ pi

∣∣ si

))
qL . (9)

In the Appendix, we show that:

Lemma 1. In markets with discriminatory pricing:

∂πi (si )

∂pi

= Pr
(

pj ≥ pi

∣∣ si

)
qH + (

1 − Pr
(

pj ≥ pi

∣∣ si

))
qL︸ ︷︷ ︸

price effect

+ (
pi − ci

(
si , p−1

j (pi )
)) ∂ Pr

(
pj ≥ pi

∣∣ si

)
∂pi

(qH − qL)︸ ︷︷ ︸
quantity effect

, (10)

whenever pi (si ) and pj (s j ) are locally differentiable and locally invertible for signals that have
offer prices near pi (si ).

In the Appendix and in the proof of Proposition 1, we show that equilibrium offers need
to be locally differentiable and invertible, so that (10) must necessarily hold in equilibrium. The
first two terms on the right-hand side of (10) correspond to the price effect. This is what the
producer would gain in expectation from increasing its offer price by one unit if the acceptance
probabilities were to remain unchanged. However, on the margin, a higher offer price lowers the
probability of being the winning producer by ∂ Pr(p j ≥pi |si )

∂pi
. Switching from being the winning to

the losing bidder reduces the accepted quantity by qH − qL . We refer to ∂ Pr(p j ≥pi |si )

∂pi
(qH − qL) as

the quantity effect, that is, the quantity that is lost on the margin from a marginal price increase.
The markup for lost sales, pi − ci (si , p−1

j (pi )), times the quantity effect gives the lost value of the
quantity effect. This is the last term on the right-hand side of (10). Note that marginal changes
in pi (si ) only result in changes in output for cases where the competitor, producer j , is bidding
very close to pi , which corresponds to the competitor receiving the signal p−1

j (pi ). This explains
why ci (si , p−1

j (pi )) is the relevant marginal cost in the markup for lost sales in the quantity effect.
We find it useful to introduce the function H ∗(s), which is proportional to the quantity effect

and inversely proportional to the price effect for a given signal s.

Definition 2.

H ∗(s) := χ (s, s) (qH − qL)∫ s

s
χ
(
s, s j

)
ds j qH + ∫ s

s
χ
(
s, s j

)
ds j qL

. (11)
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H ∗(s) depends on exogenous variables/parameters and captures the essential aspects of
the information structure, the auction format, and the essential properties of demand and the
production capacities. The unique equilibrium is symmetric, so in the following, we sometimes
find it convenient to drop subscripts.

Proposition 1. If

d

ds

(∫ s

x
χ
(
s, s j

)
ds j qH + qL

∫ x

s
χ
(
s, s j

)
ds j

χ (s, x)

)
≥ 0, (12)

for all s, x ∈ (s, s), then there is a unique BNE in the discriminatory auction. The unique equi-
librium is symmetric, efficient (given aggregated market information), and has the property that
p′(s) > 0, where

p(s) = c (s, s) +
∫ s

s

dc (v, v)

dv
e− ∫ v

s H∗(u)dudv (13)

for s ∈ [s, s). The above expression can be simplified for the following circumstances:

(1) In the limit when production costs are insensitive to common variations in signals, (13) can
be simplified to:

p(s) = c + e− ∫ s
s H∗(u)du (p − c) . (14)

(2) The condition in (12) is satisfied if signals are independent, and (13) can then be simplified
to:

p(s) = c (s, s) +
∫ s

s

dc (v, v)

dv

(
(1 − F (v)) qH + F (v) qL

(1 − F(s)) qH + F(s)qL

)
dv. (15)

In the limit when production costs are insensitive to common variations in signals, then (15)
can be further simplified to:

p(s) = c +
(

qL

((1 − F (s)) qH + F(s)qL)

)
(p − c) . (16)

(3) The condition in (12) is satisfied if signals are affiliated and both producers are nonpivotal
with certainty, which implies qL = 0, in which case (11) can be simplified to:

H ∗(s) := χ (s, s)∫ s

s
χ
(
s, s j

)
ds j

. (17)

If, in addition, production costs are insensitive to common variations in signals, the equilib-
rium offer is perfectly competitive, that is, p(s) = c for s ∈ [s, s).

Demand is inelastic, so the total output is efficient. The marginal costs are flat and in our
unique equilibrium, the firm with the highest cost and signal makes the highest offer. Thus, the
bid constraint ensures that the allocation is efficient (given aggregated market information).

Another conclusion that we can draw from Proposition 1 is that bidding behavior is only
influenced by properties of ci (si , s j ) at points where si = s j . Thus, for given properties along
the diagonal of the cost function, where signals are identical, it does not matter for our analysis
whether the costs are private, so that ∂ci (si ,s j )

∂s j
= 0, or whether the costs have a common uncertainty

component, such that ∂ci (si ,s j )

∂s j
> 0. As noted above, the reason is that when solving for the locally

optimal offer price, a producer is only interested in cases where the competitor is bidding close
to pi . In a symmetric equilibrium, this occurs when the competitor receives a similar signal. The
properties of the function c(·, ·) for signals where si 	= s j could influence the expected production
cost of a firm, but not its bidding behavior. There are related results for single-object auctions

C© The RAND Corporation 2018.



12 / THE RAND JOURNAL OF ECONOMICS

(Milgrom and Weber, 1982). However, the outcome would be different if each producer submitted
an offer with multiple offer prices or even a continuous supply function as in Vives (2011), so
that a producer could indirectly condition its output on the competitor’s information.

The second-order condition in (12) makes sure that firm i has an incentive to increase its
offer price, the ratio of the quantity and price effects becomes small, if producer i has chosen
a low offer (below the symmetric equilibrium) such that pi (s) = pj (x) for s > x . Similarly, the
condition gives firm i an incentive to decrease its offer if it has chosen offers above the symmetric
equilibrium such that pi (s) = pj (x) for s < x .

It follows from Definition 2 and Proposition 1 that H ∗(s) and p(s) are determined by the
expected sales of the high-price supplier, qH , and the expected sales of the low-price supplier, qL ,
but H ∗(s) and p(s) are independent of the variances of those sales. Moreover,

Proposition 2. In a discriminatory auction, offers become more competitive, p(s) decreases for
every s ∈ [s, s), if H ∗(s) increases for every s ∈ (s, s), which is the case if qH ≥ qL > 0 and qH

increases and/or qL decreases.

As an example, qH would increase and qL decrease, if the size of producers’ capacities were
increased, unless producers are nonpivotal with certainty.19 Recall that H ∗(s) is proportional to
the quantity effect and inversely proportional to the price effect, so it makes sense that a high
H ∗(s) results in more competitive offers with lower markups.

Costs that are common knowledge constitute a special case of the limit where firms’ marginal
costs are insensitive to common variations in signals, as in (14). If costs are common knowledge,
the signals only serve the purpose of coordinating producers’ actions, as in a correlated equilibrium
(Osborne and Rubinstein, 1994). If, in addition, signals are independent as in (16), signals
effectively become randomization devices of a mixed-strategy NE. To illustrate this, signals
could be transformed from s to P = p(s), that is, a signal that directly gives the offer price that
a firm should choose. The price signal has the probability distribution G(P) = F(p−1(P)). If we
rewrite (16), we get that

G (P) = qH

qH − qL

− qL (p − c)

(qH − qL) (P − c)
. (18)

This probability distribution of offer prices corresponds to the mixed-strategy NE that is calculated
for discriminatory auctions by Fabra, von der Fehr, and Harbord (2006). This confirms Harsanyi’s
(1973) Purification Theorem, that a mixed-strategy NE is equivalent to a pure-strategy BNE,
where costs are common knowledge and signals are independent.

If producers have sufficiently large capacity realizations, so that qi > D for both producers
and all outcomes, then both producers are nonpivotal with certainty as in Case 3 of Proposition 1,
and only the lowest (winning) offer is accepted for every outcome. In this special case, there is
no difference between the discriminatory and uniform-price auction in our setting, because the
winning offer sets its own price also in the uniform-price auction. This case also corresponds
to the first-price single-object auction, which is analyzed by Milgrom and Weber (1982). As
in Milgrom and Weber (1982), private information normally gives an informational rent, so
if costs are asymmetric information, then suppliers have a positive markup, even if they are
both nonpivotal with certainty. However, the markup p(s) − c(s, s) is zero in the limit when
production costs are insensitive to common variations in signals. For the special case where costs
are common knowledge, this result concurs with the results for uniform-price and discriminatory
auctions by von der Fehr and Harbord (1993) and Fabra, von der Fehr, and Harbord (2006).
Finally, recall that our discriminatory auction is identical to the Bertrand model, so our results for
the discriminatory auction also apply to the Bertrand game. In particular, Case 3 with nonpivotal

19 Analogously, less restrictive purchase constraints in a sales auction would make bidding more competitive.
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producers corresponds to the classical Bertrand game, whereas producers are typically pivotal in
the Bertrand-Edgeworth game.

� Uniform pricing. As mentioned earlier, Case 3 in Proposition 1 also applies when both
producers are nonpivotal with certainty in a uniform-price auction. Now, we consider the other
extreme, where both producers are pivotal with certainty in a uniform-price auction. As in the
discriminatory auction, we solve for a symmetric equilibrium. Later, we will consider the general
case where the pivotal status of producers is uncertain in the uniform-price auction, in which case
the unique equilibrium is symmetric.

The highest offer sets the market price in a uniform-price auction when both producers are
pivotal with certainty. The demand and production capacity uncertainties are independent of the
signals and cost uncertainties. Thus, when producers are both pivotal with certainty, the expected
profit of firm i when receiving signal si is:

πi (si ) = E
[

pj − c̃i

∣∣ pj ≥ pi ; si

]
Pr
(

pj ≥ pi

∣∣ si

)
qH

+ (pi (si ) − E
[

c̃i | pj ≤ pi ; si

]) (
1 − Pr

(
pj ≥ pi

∣∣ si

))
qL .

(19)

Lemma 2. In a uniform-price auction with producers that are both pivotal with certainty, we have:

∂πi (si )
∂pi

= (
1 − Pr

(
pj ≥ pi

∣∣ si

))
qL

+ ∂ Pr( p j ≥pi |si )
∂pi

(
pi − ci

(
si , p−1

j (pi )
))

(qH − qL) ,
(20)

whenever pi (si ) and pj (s j ) are locally differentiable and locally invertible for signals that have
offer prices near pi (si ).

The first-order condition for the uniform-price auction is similar to the first-order condition
for the discriminatory auction in Lemma 1, but there is one difference. In contrast to the dis-
criminatory auction, the lowest bidder does not gain anything from increasing its offer price in
a uniform-price auction when both producers are pivotal with certainty, assuming it is strictly
below the highest bidder. Thus, the price effect has one term less in the uniform-price auction,
which reduces the price effect. There is a corresponding change in the H function, which is
proportional to the quantity effect and inversely proportional to the price effect.

Ĥ (s) = (qH − qL) χ (s, s)

qL

∫ s

s
χ
(
s, s j

)
ds j

. (21)

Proposition 3. The symmetric BNE offer in a uniform-price auction where both producers are
pivotal with certainty is given by

p(s) = c (s, s) +
∫ s

s

dc (v, v)

dv
e− ∫ v

s Ĥ (u)dudv , (22)

for s ∈ [s, s) if signals are negatively affiliated. The equilibrium is efficient (given aggregated
market information) and has the property that p′(s) > 0. The expression can be simplified for the
following circumstances:

(1) In the limit when production costs are insensitive to common variations in signals, (22) can
be simplified to:

p(s) = c + e− ∫ s
s Ĥ (u)du (p − c) . (23)
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(2) Independent signals are negatively affiliated. In this case, (22) simplifies to:

p(s) = c (s, s) +
∫ s

s

dc (v, v)

dv

(
F(s)

F (v)

) (qH −qL )
qL

dv. (24)

In the limit when production costs are insensitive to common variations in signals, then (24)
can be further simplified to

p(s) = c + (F(s))
(qH −qL )

qL (p − c) . (25)

We can use an argument similar to the one we used for the discriminatory auction to show
that the limit result in (25) corresponds to the mixed-strategy NE that is derived for uniform-price
auctions by von der Fehr and Harbord (1993). (25) can also be used to calculate the expected
clearing price.

Proposition 4. If the signals are independent, the production costs are insensitive to common
variations in signals, and both producers are pivotal with certainty, then the expected market price
for the symmetric equilibrium in the uniform-price auction is given by:

p − (p − c) (qH − qL)

qH + qL

.

In the special case with certain demand and certain production capacities, such that both
producers are pivotal, we have qH = q and qL = D − q > 0, so that the expected market price is
given by

p − (p − c) (2q − D)

D
. (26)

Figure 1 plots this relationship, which gives a comparative statics analysis of the expected
transaction price with respect to a certain demand level. The dashed line shows that the expected
market price increases continuously as demand increases beyond the production capacity of
one firm and it does not reach the reservation price until demand equals the total production
capacity in the market. For an extension of our model with more than two firms in the market,

FIGURE 1

COMPARATIVE STATICS ANALYSIS FOR OUR SYMMETRIC EQUILIBRIUM AND VON DER FEHR AND
HARBORD’S (1993) ASYMMETRIC HIGH-PRICE EQUILIBRIUM IN A UNIFORM-PRICE AUCTION
WHERE PRODUCERS HAVE A CERTAIN PIVOTAL STATUS, COSTS ARE COMMON KNOWLEDGE, AND
SIGNALS ARE INDEPENDENT
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the expected price in our model would stay near the marginal cost until demand is near the total
production capacity in the market, where the expected price will take off toward the reservation
price. This would be reminiscent of what is often called “hockey-stick pricing” that is typical for
wholesale electricity markets (Hurlbut, Rogas, and Oren, 2004; Holmberg and Newbery, 2010).
In Figure 1, we also plot the high-price equilibrium in von der Fehr and Harbord (1993). In this
equilibrium, the market price jumps directly from the competitive price with zero markups up
to the reservation price when demand increases at the critical point where both producers switch
from being nonpivotal to being pivotal with certainty in a uniform-price auction.

In the comparative statics analysis in Figure 1, where costs are common knowledge, the
expected transaction price and payoffs are continuous at the point where both producers switch
from being nonpivotal to pivotal. The same is true for the equilibrium offers at this point. When
costs are common knowledge, both nonpivotal producers and just pivotal producers will make
perfectly competitive offers. However, this will change for uncertain costs. It follows from Case
3 in Proposition 1 that p(s) > c(s, s) for a uniform-price auction where both producers are
nonpivotal with certainty, which corresponds to a first-price auction. If both producers are just
pivotal with certainty, so that qL ↘ 0, then it follows from Proposition 3 that p(s) = c(s, s). This
corresponds to Milgrom and Weber’s (1982) results for second-price sales auctions, because the
lowest bidder gets to produce (almost) the whole demand, whereas the highest bidder sets the
uniform market price. Thus, the comparative statics analysis of offer prices has a discontinuity
if demand increases at the critical point where both producers’ capacities switch from being
nonpivotal with certainty to being pivotal with certainty. Somewhat counterintuitively, offer
prices decrease at this critical point, even if demand increases. On the other hand, the highest
offer sets the price when producers are just pivotal. Thus, payoffs are typically positive when
costs are uncertain, irrespective of the pivotal status of producers. It follows from the revenue-
equivalence results for first- and second-price auctions that expected transaction prices and
payoffs would be continuous at the critical point if signals are independent. However, it follows
from Milgrom and Weber’s (1982) ranking of first- and second-price auctions that the producers’
revenues would shift downward at the critical point where both producers’ capacities switch from
being nonpivotal with certainty to being pivotal with certainty, if the signals of producers are
affiliated.

� Uncertain pivotal status. In the general case, the pivotal status of each producer is uncer-
tain when its offer is submitted. In this case, both the lowest and highest offer are price-setting
with some probability, and this will ensure a unique equilibrium. In particular, the asymmetric
high-price equilibrium does not exist when the pivotal status of both producers is uncertain.20

In a uniform-price auction, the pivotal status of the highest bidder determines who sets the
uniform price. If the highest bidder is nonpivotal, then the lowest offer sets the price, as in a
discriminatory auction. We denote the probability for this event by �NP. If, on the other hand, the
highest bidder is pivotal, then its offer sets the price. This means that the expected transaction
price of the winning producer becomes a convex combination of the highest and lowest offer in
the market. This has some similarities to the single-object sales auction studied by Plum (1992),
where the pricing rule is such that the winner pays a convex combination of the highest and
second-highest bid. One difference is that the losing producer would sometimes get a positive
payoff (when it is pivotal) in our setting, whereas Plum (1992) assumes that the losing bidder
always get a zero profit, which corresponds to the case that both producers are nonpivotal with
certainty.

20 Uncertain pivotal status implies that the lowest bidder will set its transaction price with a positive probability.
As shown by von der Fehr and Harbord (1993), this implies that the lowest bidder would find it optimal to choose an
offer just below the high-price offer at the reservation price. However, this means that the high-price bidder, would find
it optimal to deviate and slightly undercut the low-price bidder.
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Lemma 3. In a uniform-price auction, where pi (si ) and pj (s j ) are locally differentiable and locally
invertible, we have:

∂πi (si )
∂pi

= Pr
(

pj ≥ pi

∣∣ si

)
q N P

H �N P + (
1 − Pr

(
pj ≥ pi

∣∣ si

))
qL

+ ∂ Pr( p j ≥pi |si )
∂pi

(
pi − ci

(
si , p−1

j (pi )
))

(qH − qL) ,
(27)

where

q N P
H = E [ D| q H ≥ D] .

Thus, the quantity effect is similar to when producers are both pivotal with certainty. However,
the price effect depends on the probability that the highest bidder is nonpivotal. Increasing an
offer price only contributes to the price effect when a producer’s offer is price-setting, that is,
when the producer is pivotal and has the highest offer price or when the producer has the lowest
offer price and the competitor is nonpivotal. The function Ĥ (s) generalizes as follows:

Definition 3.

Ĥ (s) = χ (s, s) (qH − qL)∫ s

s
χ
(
s, s j

)
ds j q N P

H �N P + ∫ s

s
χ
(
s, s j

)
ds j qL

.

Proposition 5. If the pivotal status is uncertain and

d

ds

(∫ s

x
χ
(
s, s j

)
ds j q N P

H �N P + qL

∫ x

s
χ
(
s, s j

)
ds j

χ (s, x)

)
≥ 0 (28)

for all s, x ∈ (s, s), then there is a unique BNE in the uniform-price auction. The unique equilib-
rium is symmetric, efficient, and has the property that p′(s) > 0, where:

p(s) = c (s, s) +
∫ s

s

dc (v, v)

dv
e− ∫ v

s Ĥ (u)dudv, (29)

for s ∈ [s, s). The expression can be simplified for the following circumstances:

(1) In the limit when production costs are insensitive to common variations in signals, (29) can
be simplified to:

p(s) = c + e− ∫ s
s Ĥ (u)du (p − c) . (30)

(2) Independent signals satisfy the condition in (28), in which case, (29) simplifies to:

p(s) = c (s, s) +
∫ s

s

dc (v, v)

dv

(
(1 − F (v)) q N P

H �N P + F (v) qL

(1 − F(s)) q N P
H �N P + F(s)qL

) (qH −qL )
q N P

H �N P −qL
dv. (31)

If, in addition to independent signals, production costs are insensitive to common variations
in signals, then (31) can be simplified to

p(s) = c +
(

qL(
(1 − F (s)) q N P

H �N P + F(s)qL

)) (qH −qL )
q N P

H �N P −qL

(p − c) . (32)

From Definition 3 and Proposition 5, it can be shown that:

Proposition 6. In a uniform-price auction, offers become more competitive, p(s) decreases for
every s ∈ [s, s), if Ĥ (s) increases for every s ∈ (s, s), which is the case if qH ≥ qL > 0 and qH

increases and/or qL decreases.
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� Comparison of auction formats. We know from Proposition 1 and Proposition 5 that
production is efficient for both auction formats in our setting with inelastic demand, ex ante
symmetry, monotonic equilibria, flat marginal cost, and flat offers. However, equilibrium offers
will normally depend on the auction format. It follows from Definition 2 and Definition 3 that
we have Ĥ (s) ≥ H ∗(s). Thus, the following conclusions can be drawn from Proposition 1 and
Proposition 5.

Corollary 1. Assume that the pivotal status of both producers is uncertain, and that there exists
a pure-strategy equilibrium in both auctions. For any signal si ∈ [s, s], the equilibrium offer of
producer i ∈ {1, 2} is weakly higher in a discriminatory auction than in a uniform-price auction.
Moreover, the highest accepted offer in the auction (the stop-out price) is always weakly higher
in the discriminatory auction.

Even if offers are higher in a discriminatory auction, it does not necessarily mean that the
expected payment to producers is higher, because the market price is set by the highest offer in
a uniform-price auction. The following proposition identifies circumstances where the expected
payment is lower in a uniform-price auction.

Proposition 7. Assume that signals of producers are affiliated, the pivotal status is uncertain for
both producers, and that a symmetric pure-strategy BNE exists in both auctions, then the expected
payment to producers is weakly higher in a discriminatory auction compared to a uniform-price
auction. In the special case where producers observe independent signals, then the expected
payment to producers is the same in both auctions (revenue equivalence).

The revenue-equivalence result for independent signals and uncertain pivotal status concurs
with Fabra, von der Fehr, and Harbord (2006) who showed that expected payoffs are the same for
uniform and discriminatory pricing when costs are common knowledge. Our ranking for affiliated
signals is related to and generalizes some aspects of Milgrom and Weber’s (1982) ranking of first-
and second-price auctions in single-object auctions.

� Publicity effect. In this subsection, we consider the case where the auctioneer has private
information about production costs in the market, a signal y, and we analyze whether it would
be beneficial for the auctioneer to disclose this signal to both producers. In an electricity market,
this signal can, for example, be thought of as a measure of the opportunity cost of water in a
hydro-dominated market or an estimate of the short-term price of natural gas in a gas-dominated
market.

We assume that the auctioneer’s signal is independent of demand and production capacities.
We consider a symmetric equilibrium where a producer submits an offer pC(si ; y) after observing
both its private signal si and the common signal y. A producer i has the expected marginal cost
cC(si , s j ; y) conditional on all information that is available in the market, that is,

cC
(
si , s j ; y

) = E
[

c̃i | si , s j , y
]
.

We let χC(si , s j ; y) be the joint probability density for signals of the producers conditional on the
common signal y.

Assumption 1. A producer’s marginal cost cC(si , s j ; y) is nondecreasing with respect to all
signals, strictly increasing with respect to its own signal, and such that cC(s̄, s̄; y) = p̄.

The last part of the assumption implies that the upper bound on expected costs is large
enough so that public information has no influence at that point.
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Proposition 8. Consider a discriminatory auction where the auctioneer has disclosed a signal y
to both producers and where Assumption 1 is satisfied. If

d

ds

(∫ s

x
χC

(
s, s j ; y

)
ds j qH + qL

∫ x

s
χC

(
s, s j ; y

)
ds j

χC (s, x ; y)

)
≥ 0, (33)

for all s, x ∈ (s, s), then there is a unique BNE in the auction. The unique equilibrium is symmetric,

efficient (given aggregated market information), and has the property that ∂pC (s;y)
∂s

> 0, where

pC (s; y) = cC (s, s; y) +
∫ s

s

dcC (v, v; y)

dv
e− ∫ v

s HC (u;y)dudv (34)

H C (s; y) = χC (s, s; y) (qH − qL)∫ s

s
χC

(
s, s j ; y

)
ds j qH + ∫ s

s
χC

(
s, s j ; y

)
ds j qL

, (35)

for s ∈ [s, s). Moreover, we have that ∂pC (s;y)
∂y

≥ 0 if we assume that ∂ HC (u;y)
∂y

≤ 0, or if ∂cC (s,s;y)
∂y

is
sufficiently large.

Disclosure of the common signal y will not change the allocation. In equilibrium, it is still
the producer that receives the lowest private signal that will have the lowest offer. However,
disclosing the signal y will influence the profits of producers.

Proposition 9. Consider a discriminatory auction which satisfies Assumption 1 and which has
the following properties: i) all private and public signals are affiliated, ii) ∂pC (s;y)

∂y
≥ 0, and iii) a

pure-strategy equilibrium exists irrespective of whether the auctioneer’s signal y is disclosed. In
such an auction, disclosing the auctioneer’s signal y to both producers will weakly reduce the
procurement cost of the auctioneer.

Next, we will consider related results for the uniform-price auction.

Proposition 10. Consider a uniform-price auction with uncertain pivotal status, where the auc-
tioneer has disclosed a signal y to both producers and where Assumption 1 is satisfied. If

d

ds

(∫ s

x
χ
(
s, s j ; y

)
ds j q N P

H �N P + qL

∫ x

s
χ
(
s, s j ; y

)
ds j

χ (s, x ; y)

)
≥ 0 (36)

for all s, x ∈ (s, s), then there is a unique BNE in the auction. The unique equilibrium is symmetric,

efficient, and has the property that ∂pC (s;y)
∂s

> 0, where

pC (s; y) = cC (s, s; y) +
∫ s

s

dcC (v, v; y)

dv
e− ∫ v

s ĤC (u;y)dudv (37)

Ĥ C (s; y) = χC (s, s; y) (qH − qL)∫ s

s
χC

(
s, s j ; y

)
ds j q N P

H �N P + ∫ s

s
χC

(
s, s j ; y

)
ds j qL

, (38)

for s ∈ [s, s). Moreover, we have that ∂pC (s;y)
∂y

≥ 0 if we assume that ∂ ĤC (u;y)
∂y

≤ 0, or if ∂cC (s,s;y)
∂y

is
sufficiently large.

When proving the publicity effect for the discriminatory auction, we make use of a linkage-
principle argument (Milgrom and Weber, 1982): the greater the linkage between a producer’s
private signal and his expected transaction price, the more competitive he will bid. We essentially
show that if the auctioneer discloses y, then this strengthens the linkage. Intuitively, this should
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also be true for uniform-price auctions, but in this case, we can only show this when producers
have independent signals.21

Proposition 11. Consider a uniform-price auction which satisfies Assumption 1 and has the
following properties: i) pivotal status is uncertain, ii) producers have conditionally independent
signals, possibly affiliated with the public signal, and iii) ∂pC (s;y)

∂y
≥ 0. In such an auction, disclosing

the auctioneer’s signal y to both producers will weakly reduce the procurement cost of the
auctioneer.

5. Concluding discussion

� We have analyzed a stylized duopoly model of a divisible-good procurement auction with
production uncertainty, which is of relevance for wholesale electricity markets. Each producer
receives a private signal with imperfect cost information from a bivariate probability distribution
(known to each producer) and then chooses one offer price for its entire production capacity. The
demand and production capacities could also be uncertain. A producer is pivotal when the realized
capacity of its competitor is smaller than realized demand. Marginal costs are flat (independent
of output) up to the capacity constraint. We assume that the bidding format has the constraint that
offers must also be flat.

Multiplicity of equilibria often occur in situations where some bids are never price-setting,
which gives bidders freedom when choosing such bids. The bid constraint gives bidders less
flexibility in such situations, and this facilitates uniqueness of equilibria under our bid restrictions.
We find that there is a unique BNE, which is symmetric, in the discriminatory auction. The
uniform-price auction has a unique equilibrium, which is symmetric, when the pivotal status
of both producers is uncertain. The bid constraint also reduces production inefficiencies in our
setting. The bid constraint mitigates Vives (2011) highly anticompetitive outcomes for uniform-
price auctions where costs have large common uncertainties. This indicates that our bid constraint
could potentially be beneficial for welfare and the auctioneer in uniform-price auctions of forward
contracts and hydro-dominated electricity markets. This article does not explore this in detail,
but it is our belief that the auctioneer would generally benefit from restricting offers to have a
shape/slope that is similar to the shape/slope of the marginal cost. As an example, if each plant
has a constant marginal cost independent of output, then we conjecture that it would be beneficial
for an auctioneer to restrict the number of steps in the offer stack of a producer such that it is equal
to the number of plants, as in the electricity market of Colombia. The parallel work by Anderson
and Holmberg (2018) gives this conjecture some support. They consider a Colombian multiplant
market where producers are symmetric ex ante, signals are independent, demand is inelastic and
uncertain, and the cost uncertainty is small so that the merit order of plants stays the same. They
find that there are no welfare losses in a multiunit auction under those circumstances.

When offers are constrained to be flat, we find that an auctioneer would prefer uniform
pricing when the signals are affiliated. We show that equilibrium offers in a discriminatory
auction are determined by the expected sales of the producer with the highest and lowest offer
price, respectively. A smaller difference between these sales means that both producers are pivotal
by a larger margin and equilibrium offers increase. The variance of these sales—due to demand
shocks, production outages, and volatile renewable production—will not influence the bidding
behavior of producers in a discriminatory auction. Bidding in the uniform-price auction is more
sensitive to this variance. Still, expected payoffs are not that sensitive. For given expected sales of
the highest and lowest bidder, the probability that a producer is pivotal in a uniform-price auction
does not influence the expected payoffs if producers have independent signals. For affiliated

21 One problem with the uniform-price auction, compared to discriminatory pricing, is that we need to assume that
producers have independent signals to make sure that the expected transaction price of a producer does not increase with
respect to its private signal when its offer is kept fixed, unless the auctioneer discloses y. Another problem with uniform
pricing, in comparison to second-price single-object auctions, is that producers bid strategically (with a markup).
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signals and certain demand in a uniform-price auction, a comparative statics analysis of our
equilibrium has, somewhat counterintuitively, a discontinuous decrease in producers’ payoffs if
there is a small increase in demand, such that both producers switch from being nonpivotal to
pivotal with certainty.

If the auctioneer has its own signal with cost-relevant information, and if signals of the two
producers and the auctioneer are affiliated, then it is beneficial for the auctioneer to disclose its
signal to both producers in a discriminatory auction. Intuitively, this should also hold for a uniform-
price auction, but in that case, we can only prove it when producers have independent signals. This
is related to Milgrom and Weber’s (1982) publicity effect for single-object auctions. Our result
also concurs with Vives (2011) who shows that less informational noise makes uniform-price
auctions with nonpivotal producers more competitive. Taken together, these results support the
measures taken by the European Commission to increase the transparency in European wholesale
electricity markets. However, disclosure of information is only beneficial up to a point. A pivotal
producer can deviate to the reservation price, which ensures it a minimum profit. Moreover, in a
repeated game, there is a risk that increased transparency will facilitate tacit collusion, as argued
by von der Fehr (2013).

We are concerned that cost uncertainty and asymmetric information could result in significant
markups in hydro-dominated electricity markets with scarce water, and that this could explain
in part the extraordinarily high-price periods that typically accompany scarcity of water in such
markets. Our results suggest that this problem could be reduced with improved transparency, such
as public disclosure of water levels, and by disclosing a measure of the opportunity cost of water.
Our results also argue in favor of market operators and regulators clearly defining and publicly
disclosing contingency plans, in case of extreme system conditions. In hydro-dominated markets,
improved regulatory transparency is likely to have similar procompetitive effects as improved
market transparency.

These results have analogues for multiunit sales auctions, such as security auctions. In
particular, given that bidders’ marginal valuation of financial instruments should be approximately
flat and bidders’ valuations of securities typically have large common uncertainties, we believe
that it could be beneficial for welfare and the auctioneer that uniform-price auctions of securities
or emission permits use a bidding format that constrains offers to be flat, or to have a maximum
slope. Purchase constraints in sales auctions increase the probability that both bidders are pivotal,
and make them pivotal by a wider margin. This results in less competitive outcomes, at least in
a one-shot game. On the other hand, purchase constraints may improve the competitiveness of
secondary markets.

Appendix

We start the Appendix by proving equilibrium properties that will be useful when proving uniqueness and symmetry of
BNE in auctions with discriminatory or uniform pricing. Next, we prove some relationships for conditional probabilities
and conditional expected values that will be used when solving for equilibria in the two auction formats. We then prove
results for the discriminatory and uniform-price auctions, and rank the two auction formats. The publicity effect is
analyzed at the end of the Appendix.

� Uniqueness and symmetry of the equilibrium. We first introduce the following definitions:

Definition 4.

(1) We say that pi (si ) is sometimes price-setting if, conditional on that producer i receiving the signal si ∈ [s, s], there
is a strictly positive probability that producer i has a strictly positive output and is paid the transaction price pi (si ).

(2) We say that firm i has an accumulation of offers at p if there is a range of signals (s1, s2), such that pi (si ) = p for
si ∈ (s1, s2).

Lemma 4. Consider a BNE in a uniform-price or discriminatory auction where producer i has the strategy pi (si ) for
si ∈ [s, s]. The following equilibrium properties can be proven:
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(1) Firm i cannot have a sometimes price-setting offer pi (si ) ∈ (p0, p1) if the competitor j does not have any offer in the
range (p0, p1) for any signal s j ∈ [s, s]. Similarly, firm i cannot have a sometimes price-setting offer pi (si ) ∈[p0, p1)
if firm j does not have any offer in the range (p0, p1) for any signal s j ∈ [s, s] and firm j does not have an
accumulation of offers at p0.

(2) If firm j has an accumulation of offers at p0 for signals s j ∈ (s1, s2), then there is no signal si ∈ [s, s] such that:
pi (si ) = p0 > ci (si , s2).

(3) If the lowest offer that can occur for any producer in equilibrium is sometimes price-setting, then firms must have
the same strategy when receiving the lowest signal, that is, pi (s) = p j (s).

(4) Assume that firm i has an offer pi (s) for signal s which is sometimes price-setting and such that: pi (s) = p j (s),
pi (š) < pi (s) and p j (š) < p j (s) for any existing š < s, then there is no accumulation of offers at the price pi (s).

Proof.

i) Make the contradictory assumption that the statement is true. Firm i can then increase the offer for signal si up to a
price p ∈ (pi (si ), p1). Such a change will never change the output of producer i for the stated circumstances, but it
will sometimes increase the revenue of firm i (whenever pi (si ) is price-setting), so the deviation is strictly profitable.

ii) Make the contradictory assumption that the statement is true. Firm i can then reduce its offer price pi (si ) by an
arbitrarily small amount ε > 0. Due to properties of the assumed rationing rule, such a deviation will for the signal
si increase the output of firm i by an amount that is bounded away from zero whenever the competitor receives a
signal s j in the range (s1, s2). The condition p0 > ci (si , s2) ≥ ci (si , s j ) for s j ≤ s2 ensures that it is profitable for firm
i to increase its output for those circumstances. Thus, the deviation is profitable for sufficiently small ε, so that any
resulting reductions in the transaction price of firm i become sufficiently small.

iii) Weak-monotonicity of pi (si ) and p j (s j ) imply that firm i has no offer below pi (s) and that firm j has no offer
below p j (s). Make the contradictory assumption that p j (s) 	= pi (s). Without loss of generality, we assume that
pi (s) < p j (s), where pi (s) is sometimes price-setting. However, it follows directly from i) that this is not possible in
equilibrium.

iv) Make the contradictory assumption that at least one firm j has an accumulation of offers at the price pj (s) for signals
s j ∈ [s, s2]. Without loss of generality, we assume that firm j has the (weakly) largest accumulation of offers at pj (s),
that is, there is no signal ŝ > s2 such that pi (ŝ) = p j (s). It follows from ii) that pi (s) = p j (s) = p j (s2) ≤ ci (s, s2) =
c j (s, s2), where the latter equality follows from symmetry of costs.22 It also follows that p j (s2) ≤ c j (s, s2) < c j (s2, s),
because as assumed in (3), a firm is strictly more sensitive to changes in its own signal as compared to changes in
the competitor’s signal. Thus, we have from (1) that p j (s2) < c j (s2, si ) for si ∈ [s, s]. However, this would imply that
when receiving signal s2, firm j would have a strictly negative payoff whenever p j (s2) is price-setting. Thus, firm j
can increase its payoff by increasing p j (s2).

�

We can use the technical results above to prove the following, which will be useful when proving uniqueness and
symmetry of equilibria for both auctions.

Lemma 5. Consider an auction with uniform pricing where both producers are nonpivotal with a positive probability
or a discriminatory auction. Assume that the necessary first-order conditions of offers from producers i and j have the
symmetry property that p′

i (s) = p′
j (s) whenever pi (s) = p j (s) = p, and there is no accumulation of offers at p. For such

a first-order condition, any existing BNE in the auction must be unique and symmetric. Moreover, the unique symmetric
equilibrium offer pi (s) must be invertible.

Proof. Assume that the auction has an equilibrium. The lowest offer that can occur in the equilibrium is at least partly
accepted with a positive probability. We consider an auction with either discriminatory or uniform pricing. In the latter
case, both producers are nonpivotal with a positive probability. Thus, the lowest offer is sometimes price-setting in the
auction. Hence, it follows from 3) in Lemma 4 that pi (s) = p j (s). 1) and 4) ensure that there are no discontinuities in
pi (si ) at s and no accumulation of offers at pi (s). Let s∗ be the highest signal in the range [s, s], such that no producer
has an accumulation of offers or a discontinuity in its offer function for s < s∗. Thus, the assumed symmetry property
of the first-order condition and piece-wise differentiability of pi (s) and p j (s) ensure that p′

i (s) = p′
j (s) for the range

of signals (s, s∗). The symmetry of the initial condition pi (s) = p j (s) and the symmetry of slopes p′
i (s) imply that

pi (s∗) = p j (s∗). Moreover, offers pi (s∗) = p j (s∗) are not undercut with certainty by the other firm and are therefore
sometimes price-setting if s∗ < s. Thus, we can use 1) and 4) to rule out cases where s∗ < s. Uniqueness follows from
the assumption that p = ci (s, s), which ensures that pi (s) = p for a symmetric equilibrium, even if both producers are
nonpivotal. Finally, we note that weak-monotonicity of p(s) combined with no accumulation of offers implies that p(s)
must be piece-wise strictly monotonic, and therefore invertible for any BNE. �

22 Recall that we use the convention that a firm’s own costs are always first in the list of signals.
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Compared to discriminatory pricing, we need a stricter sufficient condition to ensure uniqueness in the uniform-
price auction: both producers need to be nonpivotal with a positive probability. The reason is that an offer may sometimes
be accepted in a uniform-price auction, even if it is never price-setting, as in the high-price equilibrium by von der Fehr
and Harbord (1993). In the above uniqueness argument, we use Milgrom and Weber’s (1982) assumption that p = ci (s, s).
This assumption is crucial when ensuring uniqueness in an auction where both suppliers are nonpivotal with certainty, as
in a single-object auction. However, if the pivotal status of suppliers is uncertain, then the uniqueness result would also
hold for p > ci (s, s).

� Relationships for conditional probabilities. Before proving the lemmas and propositions that have been presented
in the main text, we will derive some results that will be used throughout these proofs. By assumption, pj (s j ) is monotonic
and invertible. Thus, we get

Pr
(

p j ≥ pi

∣∣ si

) =

∫ s

p−1
j (pi )

χ
(
si , s j

)
ds j∫ s

s

χ
(
si , s j

)
ds j

∂ Pr
(

p j ≥ pi

∣∣ si

)
∂pi

= −p−1′
j (pi )χ

(
si , p−1

j (pi )
)∫ s

s

χ
(
si , s j

)
ds j

,

(A1)

where the last result follows from Leibniz’ rule. The above results and Leibniz’ rule are used in the following derivations.
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From (A1) and (A2), we have that:
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Using the above equation, we can derive the following result:(
1 − ∂E

[
c̃i | si , p j ≥ pi

]
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)
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Similarly, from (A1), we have that
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It now follows from (A5) that:
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� Discriminatory auction. Proof. (Lemma 1) It follows from (9) that
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Using (A4) and the relation in (A6) yields:

∂πi (si )

∂pi

= Pr
(

p j ≥ pi

∣∣ si

)
qH + (

pi − ci

(
si , p−1

j (pi )
)) ∂ Pr

(
p j ≥ pi

∣∣ si

)
∂pi

qH

+ ci

(
si , p−1

j (pi )
) ∂ Pr

(
p j ≥ pi

∣∣ si

)
∂pi

qL

+ (
1 − Pr

(
p j ≥ pi

∣∣ si

))
qL − pi

∂ Pr
(

p j ≥ pi

∣∣ si

)
∂pi

qL ,

which gives (10). �

The following lemma is useful when deriving results for the nonpivotal case.

Lemma 6. e
−
∫ v

s

H (u)du
> 0 for s ≤ s < v < s and e

−
∫ s

s

H (u)du
= 0 for s ≤ s < s.
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Proof. It follows from (17) that
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The assumptions that we make for the joint probability density imply that
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is equal to zero. This is the case if and only if
∫ s

v

χ (v, s j )ds j = 0. It follows from the assumptions that we make on the

joint probability distribution that this is the case if and only if v = s. �

Proof. (Proposition 1) Consider a signal s ∈ (s, s). Assume that pi (s) = p j (s) = p(s) and that there is no accumulation
of offers at p(s). Piece-wise differentiability, weak-monotonicity of p j (s), and no accumulation of offers at p j (s) implies
that p j (s) must also be piece-wise strictly monotonic in some neighborhood around s, and therefore invertible in that
range. Thus, p−1

j (pi ) = s. Hence, we get the following first-order condition from (10).

∂πi (si )

∂pi

= Pr
(

p j ≥ p
∣∣ s
)

qH + (1 − Pr ( p ≥ p| s)) qL

+ (p − ci (s, s))
∂ Pr

(
p j ≥ p

∣∣ s
)

∂p
(qH − qL ) = 0.

Using (A1) and that p−1′
j (pi ) = 1

p′
j (s)

, the condition can be written as follows:∫ s

s

χ
(
s, s j

)
ds j qH +

∫ s

s

χ
(
s, s j

)
ds j qL − (p − c (s, s))

p′
j (s)

χ (s, s) (qH − qL ) = 0.

The condition is similar for both firms. Symmetry of the underlying parameters together with
∫ s

s

χ (s, s j )ds j qH > 0

and
∫ s

s

χ (s, s j )ds j qL ≥ 0, ensures that p′
j (s) = p′

i (s). Thus, it follows from Lemma 5 that any existing BNE must be

symmetric and unique. Below, we solve for this equilibrium.
We can use the definition in (11) to write the first-order condition on the following form:

p′(s) − (p − c (s, s)) H ∗(s) = 0. (A9)

Multiplication by the integrating factor e

∫ s

s

H ∗(u)du
yields:

p′(s)e

∫ s

s

H ∗ (u) du
− pH ∗(s)e

∫ s

s

H ∗ (u) du

= −c (s, s) H ∗(s)e

∫ s

s

H ∗ (u) du
,

so that

d

ds

⎛⎜⎝p(s)e

∫ s

s

H ∗ (u) du
⎞⎟⎠ = −c (s, s) H ∗ (s) e

∫ s

s

H ∗ (u) du
.
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Next, we integrate both sides from s to s.

p − p(s)e

∫ s

s

H ∗ (u) du
= −

∫ s

s

c (v, v) H ∗ (v) e

∫ s

v

H ∗ (u) du
dv

p(s) = pe
−
∫ s

s

H ∗ (u) du
+
∫ s

s

c (v, v) H ∗ (v) e
−
∫ v

s

H ∗ (u) du
dv.

We use integration by parts to rewrite the above expression as follows:

p(s) = pe
−
∫ s

s

H ∗ (u) du
+

⎡⎢⎣−c (v, v) e
−
∫ v

s

H ∗ (u) du
⎤⎥⎦

s

s

+
∫ s

s

dc (v, v)

dv
e

−
∫ v

s

H ∗ (u) du
dv,

which gives (13), because c(s, s) = p. It is clear from (13) that p > c(s, s) for s ∈ [s, s̄). Hence, it follows from (A9)
that p′(s) > 0 for s ∈ [s, s̄).

It remains to show that p(s) is an equilibrium. It follows from (10) and (A1) that

∂πi (s)

∂p
=

∫ s

p−1
j (p)

χ
(
s, s j

)
ds j∫ s

s

χ
(
s, s j

)
ds j

qH +

∫ p−1
j (p)

s

χ
(
s, s j

)
ds j∫ s

s

χ
(
s, s j

)
ds j

qL

− p−1′
j (p) χ

(
s, p−1

j (p)
)∫ s

s

χ
(
s, s j

)
ds j

(
p − ci

(
s, p−1

j (p)
))

(qH − qL ) .

∂πi (s)

∂p
= χ

(
s, p−1

j (p)
)∫ s

s

χ
(
s, s j

)
ds j

⎛⎜⎜⎜⎝
∫ s

p−1
j (p)

χ
(
s, s j

)
ds j

χ
(
s, p−1

j (p)
) qH +

∫ p−1
j (pi )

s

χ
(
s, s j

)
ds j

χ
(
s, p−1

j (p)
) qL

− p−1′
j (p)

(
p − ci

(
s, p−1

j (p)
))

(qH − qL )

)
.

We know that ∂πi (s)
∂p

= 0 for s = p−1
j (p). Thus, whenever d

ds
(

∫ s

x

χ (s, s j )ds j qH + qL

∫ x

s

χ (s, s j )ds j

χ(s,x)
) ≥ 0, it follows from

the above and (1) that ∂πi (s)
∂p

> 0 when s > p−1
j (p) ⇐⇒ p < p j (s) and that ∂πi (s)

∂p
< 0 when s < p−1

j (p) ⇐⇒ p > p j (s).
Thus, p(s) globally maximizes the profit of firm i for any signal s when the inequality in (12) is satisfied.

In Case 1, when costs are common knowledge, we have dc(v,v)
dv

↘ 0 for v < s, so it follows from (13) that

p(s) → c + e
−
∫ s

s

H ∗ (u) du ∫ s

s

dc (v, v)

dv
dv,

which gives (14).
For independent signals in Case 2, we have χ (s, s j ) = f (s) f (s j ), so the inequality

d

ds

⎛⎜⎜⎜⎝
∫ s

x

χ
(
s, s j

)
ds j qH + qL

∫ x

s

χ
(
s, s j

)
ds j

χ (s, x)

⎞⎟⎟⎟⎠

= d

ds

⎛⎜⎜⎜⎝
∫ s

x

f (s) f
(
s j

)
ds j qH + qL

∫ x

s

f (s) f (s j )ds j

f (s) f (x)

⎞⎟⎟⎟⎠ =

= d

ds

⎛⎜⎜⎜⎝
∫ s

x

f (s j )ds j qH + qL

∫ x

s

f (s j )ds j

f (x)

⎞⎟⎟⎟⎠ = 0 ≥ 0
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is satisfied. Moreover, we have from Definition 2 that

H ∗(s) = f (s) (qH − qL )∫ s

s

f (s j )ds j qH +
∫ s

s

f (s j )ds j qL

= − d

ds
ln

(∫ s

s

f (s j )ds j qH +
∫ s

s

f (s j )ds j qL

)
.

Thus, (13) can be written as in (15). If, in addition, the costs are insensitive to common variations in signals, so that
dc(v,v)

dv
↘ 0 for v < s, then (15) can be simplified to (16) as follows:

p(s) = c +
(

qL

((1 − F(s)) qH + F(s)qL )

)∫ s

s

dc (v, v)

dv
dv

= c +
(

qL

((1 − F(s)) qH + F(s)qL )

)
(p − c) .

Both producers are nonpivotal with certainty and qL = 0 in Case 3. Thus, H ∗(s), simplifies to (17). For affiliated
signals, we have d

ds
( χ(s,s j )

χ(s,x)
) ≥ 0 if s j ≥ x , which ensures that the global second-order condition in (12) is satisfied when

qL = 0. If, in addition, we have that the costs are insensitive to common variations of signals, then it follows from (14)
and Lemma 6 that equilibrium offers are perfectly competitive for s < s. �

Proof. (Proposition 2) The result follows from Definition 2, Proposition 1, and that

d

dx

(
x − y

ax + by

)
= y (a + b)

(ax + by)2 > 0

d

dy

(
x − y

ax + by

)
= − x (a + b)

(ax + by)2 < 0

if a + b > 0 and x ≥ y > 0. �

� Uniform-price auction. The following derivations will be useful when analyzing uniform-price auctions. It follows
from (A1) and Leibniz’ rule that:

E
[

p j − c̃i

∣∣ si , p j ≥ pi

] =

∫ s

p−1
j (pi )

(
p j (s j ) − ci

(
si , s j

))
χ
(
si , s j

)
ds j∫ s

p−1
j (pi )

χ
(
si , s j

)
ds j

=

∫ s

p−1
j (pi )

(
p j (s j ) − ci

(
si , s j

))
χ
(
si , s j

)
ds j

Pr
(

p j ≥ pi

∣∣ si

) ∫ s

s

χ
(
si , s j

)
ds j

∂E
[

p j − c̃i

∣∣ si , p j ≥ pi

]
∂pi

=
− ∂ Pr

(
p j ≥ pi

∣∣ si

)
∂pi

∫ s

p−1
j (pi )

(
p j (si ) − ci

(
si , s j

)− (
pi − ci

(
si , p−1

j (pi )
)))

χ
(
si , s j

)
ds j

(
Pr
(

p j ≥ pi

∣∣ si

))2
∫ s

s

χ
(
si , s j

)
ds j

.

(A10)

Similar to (A3), it can be shown that:

∂E
[

p j − c̃i

∣∣ si , p j ≥ pi

]
∂pi

Pr
(

p j ≥ pi

∣∣ si

)+ E
[

p j − c̃i

∣∣ si , p j ≥ pi

] ∂ Pr
(

p j ≥ pi

∣∣ si

)
∂pi

= ∂ Pr
(

p j ≥ pi

∣∣ si

)
∂pi

(
pi − ci

(
si , p−1

j (pi )
))

.

(A11)
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Proof. (Lemma 2) We have from (19) that

∂πi (si )

∂pi

= ∂E
[

p j − c̃i

∣∣ si , p j ≥ pi

]
∂pi

Pr
(

p j ≥ pi

∣∣ si

)
qH

+E
[

p j − c̃i

∣∣ si , p j ≥ pi

] ∂ Pr
(

p j ≥ pi

∣∣ si

)
∂pi

qH

+
(

1 − ∂E
[

c̃i | si , p j ≤ pi

]
∂pi

) (
1 − Pr

(
p j ≥ pi

∣∣ si

))
qL

− (pi − E
[

c̃i | si , p j ≤ pi

]) ∂ Pr
(

p j ≥ pi

∣∣ si

)
∂pi

qL .

(A12)

Next, we use (A6) and (A11) to simplify this expression to (20). �

Proof. (Proposition 3) Note that (20) is very similar to (10) and the statements can be proven in a very similar way to
the proof of Proposition 1 . In particular, it can be shown that the first-order condition is given by:∫ s

s

χ
(
s, s j

)
ds j qL − (p − c (s, s))

p′(s)
χ (s, s) (qH − qL ) = 0

p′(s) − pĤ (s) = −c (s, s) Ĥ (s).

The property of negatively affiliated signals in (8) implies that d
ds

(

∫ x

s

χ (s, s j )ds j

χ(s,x)
) ≥ 0 for x > s j , which is sufficient to

ensure global optimality. �

Proof. (Proposition 4) We let G(P) be the probability that a producer’s offer price is below P . This is the same as the
probability that s is below p−1(P). Hence, it follows from (25) that

G (P) =
(

P − c

p − c

) qL

qH − qL .

From the theory of order statistics, we know that

G2 (P) =
(

P − c

p − c

) 2qL

qH − qL

is the probability distribution of the highest offer price, which sets the price. Hence, the probability density of the market
price is given by 2G(p)G ′(p). Thus, the expected market price is given by:∫ p

c

2G (p) G ′ (p) pdp = [
G2 (p) p

]p

c
−
∫ p

c

G2 (p) dp

= p −

⎡⎢⎢⎢⎢⎢⎣
(p − c)

2qL

qH − qL

+ 1

(
2qL

qH − qL

+ 1

)
(p − c)

2qL

qH − qL

⎤⎥⎥⎥⎥⎥⎦
p

c

= p − (p − c) (qH − qL )

qH + qL

.

�

Proof. (Lemma 3) The demand and production capacity uncertainties are independent of the signals and the cost
uncertainties. Thus, the expected profit of firm i when receiving signal si is:

πi (si ) = E
[

p j − c̃i

∣∣ si , p j ≥ pi

]
Pr
(

p j ≥ pi

∣∣ si

)
q P

H

(
1 − �N P

)
+ E

[
pi (si ) − c̃i | si , p j ≥ pi

]
Pr
(

p j ≥ pi

∣∣ si

)
q N P

H �N P

+ (
pi (si ) − E

[
c̃i | si , p j ≤ pi

]) (
1 − Pr

(
p j ≥ pi

∣∣ si

))
qL , (A13)

where

q P
H = E

[
q H

∣∣ q H < D
]
.
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It follows from differentiation of (A13) and the relations in (A4), (A6), and (A11) that:

∂πi (si )

∂pi

= ∂ Pr
(

p j ≥ pi

∣∣ si

)
∂pi

(
pi − ci

(
si , p−1

j (pi )
))

q P
H

(
1 − �N P

)
+
(

Pr
(

p j ≥ pi

∣∣ si

)+ (
pi − ci

(
si , p−1

j (pi )
)) ∂ Pr

(
p j ≥ pi

∣∣ si

)
∂pi

)
q N P

H �N P

+ ∂ Pr
(

p j ≥ pi

∣∣ si

)
∂pi

(
ci

(
si , p−1

j (pi )
)− pi

)
qL

+ (1 − Pr
(

p j ≥ pi

∣∣ si

))
qL ,

(A14)

so

∂πi (si )

∂pi

= ∂ Pr
(

p j ≥ pi

∣∣ si

)
∂pi

(
pi − ci

(
si , p−1

j (pi )
)) (

q P
H

(
1 − �N P

)+ q N P
H �N P − qL

)
+ Pr

(
p j ≥ pi

∣∣ si

)
q N P

H �N P + (
1 − Pr

(
p j ≥ pi

∣∣ si

))
qL ,

which can be simplified to (27), because q H = q P
H (1 − �N P ) + q N P

H �N P . �

Proof. (Proposition 5) The proof is similar to the proof of Proposition 1. �

Proof. (Proposition 6) The argument is the same as in the proof of Proposition 2. �

� Comparison of auction formats. Proof. (Proposition 7) Let {pH , qH } and {pL , qL} be the expected transaction
price and quantity for the high-output and low-output firm, respectively. Consider a symmetric equilibrium where each
producer submits an offer p(z) when observing the signal z. Assume that the competitors follow this equilibrium strategy,
but we allow the considered producer to deviate and act as if observing a signal x , that is it makes an offer p(x), although
it actually observes the signal z. In this case, the expected payoff of the producer is given by:

π̈ (x, z) = (
pH (x, z) − E

[
c̃i | z, x ; s j ≥ x

])
(1 − F ( x | z)) qH

+ (pL (x, z) − E
[

c̃i | z, x ; s j < x
])

qL F ( x | z) ,

where

F ( x | z) =

∫ x

s

χ (z, v) dv∫ s

s

χ (z, v) dv

.

It is optimal for the producer to follow the equilibrium strategy, that is, to choose x = z. Hence,

∂π̈ (x, z)

∂x

∣∣∣∣
x=z

= 0. (A15)

Moreover, we consider equilibria such that:

π̈ (s̄, s̄) = (
p̄ − E

(
c
(
s̄, s j

)))
qL . (A16)

In the special case where signals are independent, then we have that transaction prices and F(x |z) are independent of z
(for a fixed x), so

dπ̈ (z, z)

dz
= ∂π̈ (x, z)

∂x

∣∣∣∣
x=z

+ ∂π̈ (x, z)

∂z

∣∣∣∣
x=z

(A17)

= ∂π̈ (x, z)

∂z

∣∣∣∣
x=z

= − ∂E
[

c
(
z, s j

)∣∣ z, x ; s j ≥ x
]

∂z

∣∣∣∣∣
x=z

(1 − F (z)) qH

− ∂E
[

c
(
z, s j

)∣∣ z, x ; s j < x
]

∂z

∣∣∣∣∣
x=z

qL F (z) .

This is true for any considered auction, so it follows from (A16) and (A17) that, for any signal z, the expected equilibrium
profit π̈ (z, z) must be the same in auctions with uniform and discriminatory pricing, which gives our revenue-equivalence
result. Next, we consider cases where signals are affiliated. We use the superscripts P and U for pay-as-bid (discriminatory)
and uniform-price auctions respectively. The low-output firm in a uniform-price auction is paid its own offer price p(x),
unless its output is zero. However, for the high-output firm, the price is (sometimes) set by the competitor’s offer pU (s j ),
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and the signal of the competitor is correlated (affiliated) with z. We have that pU (s j ) is increasing with respect to its
argument. Hence, it follows from Theorem 5 in Milgrom and Weber (1982) that:

∂pU
H (x, z)

∂z
= ∂

∂z
E
[

pU (u)
∣∣ u ≥ x ; x, z

] ≥ ∂pU
L (x, z)

∂z
= 0.

Thus,

∂π̈U (x, z)

∂z

∣∣∣∣
x=z

=
(

∂pU
H (z, z)

∂z
− ∂E

[
c̃i | z, x ; s j ≥ x

]
∂z

∣∣∣∣∣
x=z

)
(1 − F ( z| z)) qH

− ∂E
[

c̃i | z, x ; s j < x
]

∂z

∣∣∣∣∣
x=z

F ( z| z) qL

− (pU
H (z, z) − E

[
c̃i | z, x ; s j ≥ x

])
qH

∂ F ( x | z)

∂z

∣∣∣∣
x=z

+ (pU
L (z, z) − E

[
c̃i | z, x ; s j < x

])
qL

∂ F ( x | z)

∂z

∣∣∣∣
x=z

.

In a discriminatory auction, we have

pP
H (x, z) = pP

L (x, z) = pP (x) ,

so

∂pP
H (x, z)

∂z
= ∂pP

L (x, z)

∂z
= 0.

Production costs are the same for both auction formats. Thus, if π̈U (z, z) = π̈ P (z, z), then it follows that pU
H (z, z) ≥

pP
H (z, z) = pP

L (z, z) ≥ pU
L (z, z). We have

∂ F(x |z)

∂z
≤ 0 for affiliated signals, so whenever π̈U (z, z) = π̈ P (z, z), it must

be the case that:

∂π̈ P (x, z)

∂z

∣∣∣∣
x=z

≤ ∂π̈U (x, z)

∂z

∣∣∣∣
x=z

. (A18)

We know from (A15) that
∂π̈ (x, z)

∂x
|x=z is the same for the two auction formats. Hence, it follows from the inequality

in (A18) that
dπ̈ P (z, z)

dz
≤ dπ̈U (z, z)

dz
whenever π̈U (z, z) = π̈ P (z, z). Thus, it follows from the boundary condition in

(A16) that π̈ P (z, z) ≥ π̈U (z, z). �

� Publicity effect. Proof. (Proposition 8) The second-order condition and equilibrium offers can be derived by a
proof similar to the proof of Proposition 1. Similar to that proof, it can also be shown that pC(s; y) satisfies the following
first-order condition:

∂pC (s; y)

∂s
= (

pC (s; y) − cC (s, s; y)
)

H C (s; y) .

Consider the same equation, but for y1 ≥ y. Thus, we have from
∂ H C(s; y)

∂y
≤ 0 and Assumption 1 that whenever

pC(s; y) = pC(s; y1), then
∂pC(s; y)

∂s
≥ ∂pC(s; y1)

∂s
. By assumption, cC(s̄, s̄; y) = p̄, which gives the boundary condi-

tion pC(s̄; y) = pC(s̄; y1) = p̄, so that pC(s; y1) ≥ pC(s; y) for every y1 ≥ y, which gives
∂pC(s; y)

∂y
≥ 0. We realize

that we get the same result if
∂cC(s, s; y)

∂y
is sufficiently large relative to

∂ H C(s; y)

∂y
. �

Next, we will use an argument related to the linkage principle for single-object auctions (Milgrom and Weber,
1982). Consider an auction where the auctioneer discloses its signal y. In a symmetric equilibrium, each producer submits
an offer pC(z; y) when observing the private signal z and the common signal y. Assume that the competitors follow this
equilibrium strategy, but we allow the considered producer to deviate and act as if observing a signal x , that is, it makes
an offer pC(x ; y), although it actually observes the signal z. Thus, we define the following expected payments

W C (x, z) = E
[

pC
H (x, z; y)

∣∣ x, z; s j ≥ x
]

(A19)
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LC (x, z) = E
[

pC
L (x, z; y)

∣∣ x, z; s j ≤ x
]
, (A20)

where pC
H (x, z; y) is the expected transaction price conditional on that the producer observes y and z, offers pC(x ; y), and

gets a high output. Analogously, pC
L (x, z; y) is the expected transaction price conditional on that the producer observes

y and z, offers pC(x ; y), and gets a low output. We also find it useful to introduce

F ( x | z) =

∫ x

s

χ (z, v) dv∫ s

s

χ (z, v) dv

.

We define

RC (x, z) = W C (x, z) (1 − F ( x | z)) qH + LC (x, z) qL F ( x | z) , (A21)

which is the expected revenue of the considered producer when it acts as if observing a signal x . We use the superscript
N for the case where the auctioneer does not disclose its signal y, and define

W N (x, z) = pN
H (x, z) (A22)

LN (x, z) = pN
L (x, z) , (A23)

where pN
H (x, z) is the expected transaction price conditional on that the producer observes z, offers p(x), and gets a high

output. In this case, the expected revenue can be written:

RN (x, z) = W N (x, z) (1 − F ( x | z)) qH + LN (x, z) F ( x | z) qL . (A24)

We formulate the linkage principle for these circumstances as follows:

Lemma 7. If RC(s̄, s̄) = RN (s̄, s̄) = p̄qL ,
∂ RC(x, z)

∂z
|x=z ≥ ∂ RN (x, z)

∂z
|x=z , and an equilibrium exists irrespective of

whether the auctioneer’s signal is disclosed, then the revenue of producers decreases when the auctioneer’s signal is
disclosed.

Proof. If the considered producer observes the private signal z and acts as if observing x , then its expected payoff is
given by:

π̈C (x, z) = (
W C (x, z) − E

[
c̃i | x, z; s j ≥ x

])
(1 − F ( x | z)) qH

+ (LC (x, z) − E
[

c̃i | x, z; s j ≤ x
])

qL F ( x | z) .

In equilibrium, we have that it is optimal for the producer to choose x = z, that is,23

∂π̈C (x, z)

∂x

∣∣∣∣
x=z

= W C
1 (z, z) (1 − F ( z| z)) qH − W C (z, z) f ( z| z) qH (A25)

+c (z, z) f ( z| z) (qH − qL ) + LC
1 (z, z) F ( z| z) qL + LC (z, z) f ( z| z) qL

= 0.

The first-order condition can equivalently be written:

∂ RC (x, z)

∂x

∣∣∣∣
x=z

= −c (z, z) f ( z| z) (qH − qL ) . (A26)

Similar, we have for an auction where the signal y is not disclosed that:

∂ RN (x, z)

∂x

∣∣∣∣
x=z

= −c (z, z) f ( z| z) (qH − qL ) . (A27)

23 This is true for any y, so it is also true in expectation.
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Thus, it follows from our assumptions that

d RC (z, z)

dz
= ∂ RC (x, z)

∂z

∣∣∣∣
x=z

+ ∂ RC (x, z)

∂x

∣∣∣∣
x=z

≥ d RN (z, z)

dz
.

The result now follows from the boundary condition RC(s̄, s̄) = RN (s̄, s̄) = p̄qL . �

Thus, if disclosing the signal y increases the linkage between producers’ private signals and their revenues, then it
is beneficial for the auctioneer to disclose the signal y. We use this result in the following proof.

Proof. (Proposition 9) We have by assumption that ∂pC (s;y)
∂y

≥ 0. The signals are affiliated and both pC
H (x ; z; y) and

pC
L (x ; z; y) are nondecreasing in all of their arguments, so it follows from Theorem 5 in Milgrom and Weber (1982) that

W C
2 (x, z) ≥ 0 and LC

2 (x, z) ≥ 0.24 Thus, it follows from (A21) that

∂ RC (x, z)

∂z

∣∣∣∣
x=z

= W C
2 (z, z) (1 − F ( z| z)) qH + LC

2 (z, z) F ( z| z) qL (A28)

−W C (z, z)
∂ F ( x | z)

∂z

∣∣∣∣
x=z

qH + LC (z, z)
∂ F ( x | z)

∂z

∣∣∣∣
x=z

qL

≥ − W C (z, z)
∂ F ( x | z)

∂z

∣∣∣∣
x=z

qH + LC (z, z)
∂ F ( x | z)

∂z

∣∣∣∣
x=z

qL .

In an auction where the signal y is not disclosed, we have that W N
2 (z, z) = LN

2 (z, z) = 0, because the transaction
price is set by the offer p(x), which does not change with changed information z. Thus,

∂ RN (x, z)

∂z

∣∣∣∣
x=z

= −W N (z, z)
∂ F ( x | z)

∂z

∣∣∣∣
x=z

qH + LN (z, z) qL

∂ F ( x | z)

∂z

∣∣∣∣
x=z

.

In a discriminatory auction where the signal y is not disclosed to producers, we also have that W N (z, z) = LN (z, z) = p(z).
Thus, whenever we have RN (z, z) = RC(z, z) at some price, then we must have W C(z, z) ≥ W N (z, z) = LN (z, z) ≥
LC(z, z), so that

∂ RC (x, z)

∂z

∣∣∣∣
x=z

≥ ∂ RN (x, z)

∂z

∣∣∣∣
x=z

,

because ∂ F(x |z)
∂z

≤ 0 when private signals of producers are affiliated. The result now follows from Lemma 7. �

Proof. (Proposition 10) The second-order condition and equilibrium offers can be derived by a proof similar to the proof

of Proposition 1. ∂pC (s;y)
∂y

≥ 0 can be shown from the same argument as in the proof of Proposition 8. �

Proof. (Proposition 11) The second-order conditions in Proposition 5 and Proposition 10 are satisfied for independent
signals. This ensures existence of an equilibrium, irrespective of whether the auctioneer discloses y. In the special case

with independent private signals, we have that ∂ F(x |z)
∂z

= 0, W N
2 (z, z) = LN

2 (z, z) = 0, so that ∂ RN (x,z)
∂z

|x=z = 0, whereas
∂ RC (x,z)

∂z
|x=z ≥ 0. The result now follows from Lemma 7. �

References

ALLEN, B. AND HELLWIG, M. “Price-Setting Firms and the Oligopolistic Foundations of Perfect Competition.” The
American Economic Review, Vol. 76 (1986), pp. 387–392.

ANDERSON, E. AND HOLMBERG, P. “Price Instability in Multi-Unit Auctions.” Journal of Economic Theory, Vol. 175
(2018), pp. 318–341.

ANDERSON, E., HOLMBERG, P., AND PHILPOTT, A. “Mixed Strategies in Discriminatory Divisible-Good Auctions.” RAND
Journal of Economics, Vol. 44 (2013), pp. 1–32.

ANWAR, A. “Single or Multiple Pricing in Electricity Pools?” Working Paper no. 143, Department of Economics, Edinburgh
University, 2006.

24 Note that z does not have any direct effect on the offer price when x is kept fixed. However, there is an indirect
effect, if z increases, then the common signal y is also likely to increase (due to its affiliation with z), and this increases
offer prices in expectation.

C© The RAND Corporation 2018.



32 / THE RAND JOURNAL OF ECONOMICS
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Statistics/Annales d’Économie et de Statistique, Vol. 93/94 (2009), pp. 135–160.

AUSUBEL, L.M. “An Efficient Ascending-Bid Auction for Multiple Objects.” The American Economic Review, Vol. 94
(2004), pp. 1452–1475.

AUSUBEL, L.M., CRAMTON, P., PYCIA, M., ROSTEK, M., AND WERETKA, M. “Demand Reduction and Inefficiency in
Multi-Unit Auctions.” Review of Economic Studies, Vol. 81 (2014), pp. 1366–1400.

BANAL-ESTANOL, A. AND MICOLA, A.R. “Composition of Electricity Generation Portfolios, Pivotal Dynamics, and Market
Prices.” Management Science, Vol. 55 (2009), pp. 1813–1831.

BARTOLINI, L. AND COTTARELLI, C. “Treasury Bill Auctions: Issues and Uses.” In M.I. Blejer and T. Ter-Minassian, eds.,
Macroeconomic Dimensions of Public Finance: Essays in Honour of Vito Tanzi. London: Routledge, 1997.

BECKMANN, M. “Edgeworth-Bertrand Duopoly Revisited.” In R. Henn, ed., Methods of Operations Research III. Meisen-
heim: Verlag Anton Hain, 1967.

BRENNER, M., GALAI, D., AND SADE, O. “Sovereign Debt Auctions: Uniform or Discriminatory?” Journal of Monetary
Economics, Vol. 56 (2009), pp. 267–274.

BUSHNELL, J., KNITTEL, C.R., AND WOLAK, F. “Estimating the Opportunities for Market Power
in a Deregulated Wisconsin Electricity Market” (1999). web.stanford.edu/group/fwolak/cgi-
bin/sites/default/files/BushnellKnittelWolak(002).pdf. Accessed August 31, 2018.

DENECKERE, R. AND KOVENOCK, D. “Bertrand-Edgeworth Duopoly with Unit Cost Asymmetry.” Economic Theory, Vol.
8 (1996), pp. 1–25.

EDGEWORTH, F. Papers Relating to Political Economy. London: Macmillan, 1925.
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