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Adverse Selection in an Opt-In Emissions Trading Program 

The Case of Sectoral Crediting for Transportation 

Adam Millard-Ball 
 

Abstract 

Sectoral crediting mechanisms such as sectoral no-lose targets have been proposed as a way to 

provide incentives for emission reductions in developing countries as part of an international climate 

agreement, and scale up carbon trading from the project-level Clean Development Mechanism to 

the sectoral level. Countries would generate tradable emission credits (offsets) for reducing 

emissions in a sector below an agreed crediting baseline. I show that large uncertainties in the 

regulator’s predictions of the counterfactual business-as-usual baseline are likely to render sectoral 

no-lose targets an extremely unattractive mechanism in practice, at least for the transportation case 

study presented here. Given these uncertainties, the regulator faces a tradeoff between efficiency 

(setting generous crediting baselines to encourage more countries to opt in) and limiting transfer 

payments for non-additional offsets (which are generated if the crediting baseline is set above 

business-as-usual).  I show that the first-best outcome is attainable through setting a generous 

crediting baseline. However, this comes at the cost of either increased environmental damage (if 

developed country targets are not adjusted to account for non-additional offsets), or transfers from 

developed to developing countries that are likely to be too high to be politically feasible (if 

developed country targets are made more stringent in recognition that many offsets are non-

additional). A more stringent crediting baseline still generates a large proportion of non-additional 

offsets, but renders sectoral no-lose targets virtually irrelevant as few countries opt in. 
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1 Introduction 

The carbon market is the centerpiece of current efforts to engage developing countries in global 

efforts to reduce greenhouse gas emissions. In particular, the Clean Development Mechanism 

(CDM), one of the implementation mechanisms of the Kyoto Protocol, allows developed countries 

to purchase emission reductions (carbon offsets) from projects in developing countries as a partial 

alternative to domestic action. By equalizing marginal abatement costs across sectors and across 

countries, the CDM can in principle substantially reduce the cost of achieving a given abatement1 

target, or increase the volume of emission reductions secured at a given carbon price or marginal 

abatement cost (Anger et al. 2007).   

The CDM, however, has come in for substantial criticism in recent years. There is evidence that 

many of the CDM offsets are not additional, i.e. the project would have been undertaken anyway in 

the absence of the CDM, and thus no emission reductions are being achieved (Wara and Victor 

2008; Haya 2009; Schneider 2009; Fujiwara 2010; He and Morse 2010). Other lines of criticism relate 

to problems with the methodologies used to quantify emission reductions (Millard-Ball and 

Ortolano 2010); the lack of broad sustainable development benefits from CDM projects (Sutter and 

Parreño 2007); and the inability of the CDM to promote innovation and incentivize long-term 

transformations in energy systems (Sterk 2008). 

Sectoral no-lose targets and other sector-based crediting mechanisms have emerged prominently in 

the policy literature as a way to overcome some of these problems with project-level CDM (Bosi and 

Ellis 2005; Figueres 2006; Center for Clean Air Policy 2008; Ecofys 2008; Sterk 2008; Baron et al. 

2009; IETA 2010). Sectoral approaches have also been seen as a stepping-stone to “graduation,” i.e. 

the assumption of binding emissions targets by developing countries (Michaelowa et al. 2005; 

Schneider and Cames 2009).  

Developing countries would opt-in to a sectoral no-lose targets mechanism on a voluntary basis, and 

could generate tradable credits (offsets) by reducing emissions to below a sectoral crediting baseline 

(Figure 1). Emissions above the crediting baseline would not be penalized (hence, the “no lose” 

                                                

1 Note that abatement does not necessarily refer to a reduction in emissions from current levels. It only implies a 

reduction below the business-as-usual counterfactual. 
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designation). In contrast to project-based CDM, where projects are typically proposed and 

developed by private investors, offsets from sectoral no-lose targets would accrue to national 

governments, who would in turn determine whether and how to pass through the carbon price 

signal or provide other emission reduction incentives to private actors. Offsets would be sold to 

developed (Annex I) countries that face binding emission caps, or in conjunction with some other 

source of demand for offsets such as a domestic cap-and-trade program.  

Most discussions of sectoral no-lose targets assume that the crediting baseline would be set below 

the expected business-as-usual (BAU) counterfactual, as implied in Figure 1. This would bring about 

a net reduction in global greenhouse gas emissions, and ensure that some abatement is funded by 

developing countries themselves or through multilateral grant programs. However, the crediting 

baseline could in principle be set at any level, including above BAU. 

Figure 1 Concept of Sectoral No-Lose Targets 

 

The opt-in nature of sectoral no-lose targets presents potential problems of adverse selection if there 

exist information asymmetries between the regulator and individual developing countries. Indeed, 

this is an issue with any voluntary opt-in emissions trading program; Montero (2000) demonstrates 

the regulator’s trade-off between efficiency (ensuring that all entities with low abatement costs opt 

in) and information rent extraction (reducing the number of “excess permits” allocated). A stringent 

crediting baseline can reduce information rents and the number of excess permits, but at an 

efficiency cost as fewer entities opt in. 
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In the case of the U.S. Acid Rain Program, generating units with a “generous” baseline (one set 

above their counterfactual emissions) were more likely to opt in, resulting in increased SO2 

emissions and a net social loss after considering abatement cost savings (Montero 1999). Adverse 

selection problems have also been raised in the contexts of crediting rules under project-based CDM 

(Fischer 2005) and under opt-in programs for agriculture and forestry (Kerr and Sweet 2008; van 

Benthem and Kerr 2010). 

This paper uses the transportation sector as a case study to examine how rules for setting crediting 

baselines affect decisions by developing countries to opt in to a sectoral no-lose targets mechanism. 

I offer two main contributions to the literature. First, I provide empirical results that quantify the 

information rents (which have an associated transfer or environmental cost) and efficiency 

implications of adverse selection in an opt-in emissions trading program. With one main exception 

(Montero 1999), the impacts of adverse selection in emissions trading have not been estimated 

empirically. Moreover, in contrast to Montero, the context of this paper is international, and as a 

result efficiency-improving transfers may be harder to implement for political reasons. I show that 

while the first-best outcome2 is attainable, this result requires transfers from developed to 

developing countries that are likely to be too high to be politically feasible. The higher the abatement 

costs in developing countries, or the less precision with which business-as-usual emissions can be 

estimated, the higher the transfers that are required to maintain this first-best outcome. These 

transfers are assumed to be made through adopting more stringent emissions targets in developed 

countries, in order to maintain global emissions at the optimum level. If targets are not adjusted, 

then there may be no efficiency gain at all due to increased environmental damage.  

Second, I contribute to the policy literature on emissions trading mechanisms to engage developing 

countries in greenhouse gas abatement. While sectoral no-lose targets have been widely discussed as 

a new potential climate policy mechanism, adverse selection has scarcely been mentioned at all, 

except implicitly as part of a discussion of methodological difficulties in setting crediting baselines 

(Sterk 2008; Bongardt et al. 2009). Indeed, the literature on sectoral no-lose targets has focused on 

conceptual design issues with little detailed analysis of how to set the crediting baseline.  
                                                

2 Throughout this paper, I ignore potential inefficiencies from the raising of public funds. For instance, if offsets are 

purchased by national governments, this may require an increase in distortionary taxes. 
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Transportation is an important case study in part because of the sheer size of the sector. It 

accounted for 23% of global energy-related CO2 emissions in 2007, and this proportion remains 

unchanged in 2030 under the International Energy Agency’s (2009b) reference scenario. 

Transportation is also useful to consider because the gains of moving to a sectoral approach may be 

large. The sector has been under-represented in project-level CDM, accounting for just 0.1% of 

registered CDM projects and the same proportion of projected emission reductions as of March 

2010 (UNEP Risø 2010). However, the paucity of transportation CDM projects may not be a 

reflection of the abatement potential; numerous low-cost opportunities to reduce transportation 

emissions are likely to exist in developing countries, especially when co-benefits are considered 

(Sperling and Salon 2002; Wright and Fulton 2005; Johnson et al. 2009). Several authors have called 

for sectoral no-lose targets or similar approaches for transportation as an alternative to project-based 

CDM (Bradley et al. 2007; Schneider and Cames 2009; Wittneben et al. 2009) 

The paper proceeds as follows. In Section 2, I present a theoretical model that specifies opt-in and 

abatement decisions by developing countries, and the baseline setting decision by the regulator. 

Section 3 describes the empirical approach to estimating abatement cost functions and business-as-

usual emissions. In Section 4, I present the results of the simulations. Section 5 concludes with 

policy implications. 
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2 A Model of an Opt-In Trading Program 

2.1 Opt-In and Abatement by Developing Countries 

The model presented here is similar in spirit to that of van Benthem and Kerr (2010), who develop it 

in the context of a forestry program. We have i = 1….N entities that may choose to opt-in to a 

trading program. The entities are non-Annex I countries (primarily developing nations) that do not 

face binding emission targets under the Kyoto Protocol or a similar agreement. I refer to them 

simply as “countries” or “developing countries” in the following sections. (Annex I countries do not 

enter into the model, except as an exogenous source of demand for offsets.) For simplicity, I 

develop a one-shot model of a single compliance period. Provided abatement costs and decisions are 

independent over different compliance periods, this model generalizes in a straightforward way to 

multiple compliance periods. 

Each country has business-as-usual (BAU) emissions 

! 

zit
0  in period t. For simplicity, in the remainder 

of this section I drop the t subscript and refer only to the compliance period, which might be a 

single year or, as under the Kyoto Protocol, span multiple years. If a country does not opt in, its 

emissions are 

! 

zi
0  by definition and its abatement cost is zero. It a country opts in, it chooses 

emission levels 

! 

zi  and incurs an abatement cost 

! 

ci zi
0 " zi( ) . 

Each country is assigned a crediting baseline 

! 

bi for the compliance period by an international 

regulator such as the UN Framework Convention on Climate Change secretariat (UNFCCC). Any 

reductions below this crediting baseline can be sold on the carbon market as offsets at an exogenous 

price p. Assuming that countries are profit-maximizing and do not care about aggregate emission 

levels, each country receives the following payoff: 

! 

" i = p bi # zi( ) # ci zi0 # zi( )          if bi > zi
" i = #ci zi

0 # zi( )                            otherwise 
 (1) 

Note that the “no lose” provision means that a country never needs to buy offsets, even if emissions 

are above the crediting baseline. Also note that the payoff is zero if a country does not opt in. 
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I assume that countries have perfect information, i.e. they know the carbon price p, BAU 

emissions

! 

zi
0  and cost function 

! 

ci zi
0 " zi( )  with certainty. (Incidentally, this assumption renders the 

“no-lose” provision redundant, as a country would not opt in if it knew that it were going to lose 

out.) A country will opt in for the compliance period if and only if: 

! 

p bi " zi( ) # ci zi0 " zi( ) (2) 

Given the usual conditions on the shape of the cost function, a country that opts in will reduce 

emissions to 

! 

zi
e , defined as the point where price equals marginal abatement cost, i.e. 

! 

p = "
#ci
#zi

e . 

Thus, a developing country chooses emissions 

! 

zi
* as follows: 

! 

zi
* = zi

e      if p bi " zi( ) # ci zi0 " zi( )
       zi

0      otherwise
 (3) 

Graphically, this is shown in Figure 2. If the cost of reducing emissions from BAU to the crediting 

baseline b (area A) is less than the rents earned on emission reductions that can be sold on the 

carbon market (area D), then a country opts in, as in the left panel. If area A is equal to area D, 

which occurs if the crediting baseline is changed to b’ , a country is indifferent regarding opt-in, as in 

the right panel.  

Figure 2 Opt-in Decisions By Developing Countries 
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2.2 BAU Estimating and Baseline Setting by the Regulator 

I assume that the regulator knows the carbon price p and country-specific cost function 

! 

ci zi
0 " zi( )  

with certainty. However, it estimates BAU emissions with error as 

! 

ˆ z i
0 = zi

0 + "i . These BAU 

estimates, in turn, serve as the basis for setting the crediting baseline. Most likely, the crediting 

baseline would be set as a percentage of estimated BAU. 

This asymmetry in information regarding BAU emissions between countries and the regulator is the 

source of the adverse selection. It might arise as the regulator does not know which transportation 

infrastructure investments, taxation changes or regulatory measures a country planned to undertake 

under BAU. In addition, while the regulator makes a one-shot estimate of BAU, the country has the 

opportunity to update its emissions estimate over time and change its opt-in decision. Moreover, 

while the regulator can condition a dynamic estimate of BAU on observables such as GDP and 

population, it cannot use changes in variables that may be the target of transportation policy 

measures such as public transportation provision or local fuel prices. For example, suppose that a 

crediting baseline is set as a percentage of BAU, which in turn is estimated dynamically. If local fuel 

prices are used to make this dynamic estimate, there is no incentive for a country to reduce fuel 

subsidies or increase fuel taxes as an emission reduction measure. Such an action would simply be 

reflected in a more stringent crediting baseline. 

Setting aside any politically negotiated dimension, we might posit three alternative objective 

functions that the regulator seeks to optimize when setting the vector crediting baselines b: 

1.  Maximize average offset quality. We can define a non-additional offset as one that is generated 

by virtue of the crediting baseline being set above BAU. A country needs to take no action and 

incurs no abatement costs to generate these non-additional offsets. We can thus define an average 

offset quality objective as one that minimizes the proportion of non-additional offsets that are 

generated. This may be motivated on environmental grounds, or to minimize the proportion of 

expenditure on offsets that is a pure transfer from Annex I to non-Annex I countries. Formally, the 

regulator sets 
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! 

bQUALITY
* = argmin

b
E

max bi " zi
0,  0( )i=1

N
#

max bi " zi
*,  0( )i=1

N
#

$ 
% 
& 

' & 

( 
) 
& 

* & 
 (4) 

The numerator is the volume of non-additional offsets (the difference between the baseline and 

BAU emissions, if positive). The denominator is the total volume of offsets generated (the 

difference between the baseline and actual emissions, if positive). 

We assume that 

! 

E max bi " zi
*,  0( )i=1

N
# > 0
$ 
% 
& 

' 
( 
) 

, i.e. the regulator does not set the crediting baseline so 

stringently that no country opts in and no offsets are generated. 

In the absence of the private information held by each country about their true baseline, the 

regulator can ensure that all offsets are additional by setting 

! 

bi " zi
0 . However, since 

! 

zi
0  is estimated 

with error, this may not be possible for all countries. 

2. Minimize global emissions.  This objective has an environmental motivation, in that the 

regulator wishes to minimize global emissions. It is most applicable in a world where emission 

reductions targets in Annex I countries are implicitly fixed or set independently of the existence of 

any offset mechanism. Any non-additional offsets (generated if 

! 

zi
0 < bi) will increase global 

emissions, and may lead to an efficiency loss if Annex I emission caps were set at or above the 

efficient level. Additional offsets have no impact on aggregate emissions, as any reductions in 

developing countries are counterbalanced by increased emissions in Annex I countries. However, 

the regulator may be able to secure a reduction in aggregate emissions; this occurs if the crediting 

baseline is set below BAU, and the aggregate emission reduction is 

! 

zi
0 " bi  from any country that 

opts in. 

 

Formally, the regulator sets the crediting baseline to minimize the sum of developing country 

emissions and offsets generated: 

! 

bMIN _ EMISSIONS
* = argmin

b
E zi

* + max bi " zi
*,  0( )[ ]i=1

N
#$ 
% 
& 

' 
( 
) 

 (5) 
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3. Maximize efficiency. Under this objective, the regulator maximizes the emissions-weighted 

number of countries that opt in. In a world where targets in Annex I countries adjust to the 

expected supply of non-additional offsets from developing countries, this can be interpreted as an 

efficiency objective, in that the regulator takes advantage of all developing world abatement 

opportunities with a marginal cost less than the carbon price. This objective is also equivalent to 

minimizing emissions in developing countries.   

! 

bEFF
* = argmin

b
E zi

*
i=1

N
"# 
$ 
% 

& 
' 
( 

 (6) 

2.3 Implications of Alternative Baselines 

Note that the crediting baseline only affects the decision to opt in, and not the volume of emission 

reductions conditional on having opted in. If all countries opt in, we achieve the efficient outcome 

in the sense that abatement opportunities in all countries can be realized. However, the crediting 

baseline does matter in terms of affecting the level of transfers between Annex I and developing 

countries; and aggregate global emissions. We can think of 

! 

bi
ras a “rent extraction” point in that it is 

the most stringent baseline that ensures a country will opt in. 

! 

p bi
r " zi

*( ) = ci zi
0 " zi

*( )# bi
r =

ci zi
0 " zi

*( )
p

+ zi
*  (7) 

It is straightforward to show that, as demonstrated by Montero (2000), the choice of crediting 

baseline trades off efficiency for transfer costs (or information rents in Montero’s terminology). The 

number of countries opting in and the transfer costs (payment for non-additional emission 

reductions) are both increasing in the crediting baseline. Thus, the regulator’s efficiency objective is 

straightforward to achieve by setting a crediting baseline so generous that all countries opt in. 

In contrast, it is unclear how a regulator should set a crediting baseline to optimize against the other 

two potential objectives – maximizing average offset quality, or minimizing global emissions. Both 

the numerator and denominator of (4) are increasing in b, and so the effect of changing the baseline 

on the proportion of additional offsets is ambiguous. A similar ambiguity applies to (5); global 

emissions are the sum of developing country emissions

! 

zi
*, which are decreasing in bi , and offsets 

! 

max bi " zi
*,  0( ) , which are increasing in bi . The following sections address this issue empirically. 
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3 Empirical Approach 

The broad empirical approach adopted here is to hypothesize that sectoral no-lose targets had been 

implemented in some prior year, perhaps as part of the 1997 Kyoto Protocol. In order to simulate 

opt-in and abatement decisions under a sectoral no-lose targets mechanism, we need to specify the 

abatement cost function, the crediting baseline, BAU emissions, and the carbon price, as is evident 

from Eq. (3). Section 3.1 discusses estimation of abatement costs. Section 3.2 discusses alternative 

ways in which the regulator might set the crediting baseline. BAU emissions from transportation are 

observed3 and I use data from the International Energy Agency (2009a), with 2007 being the most 

recent year for which data are available. I do not attempt to estimate the carbon price, but rather 

undertake simulations under a range of price scenarios.  

3.1 Estimating Abatement Costs 

I derive regionally specific abatement cost curves from the Global Change Assessment Model 

(GCAM), an integrated assessment model that models emissions in 15-year time steps from 1990 to 

2095 (Kim et al. 2006). The regions modeled are China, Africa, Eastern Europe, Former Soviet 

Union (FSU), India, Korea, Latin America, Middle East and Southeast Asia (the other five regions in 

GCAM consist only of Annex I countries). I impose a series of carbon prices for each region from 

2020, and use GCAM to simulate abatement in 2020 at that price. This is similar to the procedure 

used by Böhringer et al. (2005) in a multi-sectoral context, and by Baker et al. (2009) in the context 

of solar energy technologies. Note that percentage abatement in 2020 is similar to that in 2035, and 

so the results are scarcely affected by using a longer time period to adjust to the carbon price. 

Large differences in abatement cost estimates are often observed between bottom-up engineering 

studies and top-down integrated assessment models (Jaccard et al. 2004; van Vuuren et al. 2009). In 

this instance, however, estimates from the GCAM model are similar in magnitude to those derived 

from McKinsey engineering estimates of the maximum technical potential of a range of abatement 

options in several individual developing or emerging market countries – Brazil, China, Mexico and 

                                                

3 In other sectors, the presence of CDM projects poses a complication, and means that observed emissions will not 

necessarily correspond to BAU. In the transport sector, however, just two CDM projects had been registered by the end 

of 2009. I therefore take observed emissions in developing countries as a reasonable approximation for BAU. 
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Russia (McKinsey & Company 2009a, b, c, d). Both the GCAM cost curves and the McKinsey point 

estimates are shown in Figure 3. 

This rough agreement between the McKinsey and GCAM methods increases confidence in the 

abatement cost curve estimates. The estimates are still highly uncertain, given the implicit 

assumptions on future energy prices, economic growth, technological progress and consumer 

preferences, to name just a few. However, sensitivity tests to differences in abatement costs are 

implicitly performed as the simulations in Section 4 are run with a variety of carbon prices. This will 

capture any variation in the level of the abatement cost curve; doubling the carbon price is 

equivalent to halving abatement costs.  

Another form of sensitivity analysis involves using different shaped cost curves, rather than simply 

changing their level. Simulations were also run using cost curves derived from the McKinsey country 

studies referred to above. These sensitivity tests (not shown) lead to almost no change in the 

decisions of countries to opt in at a given price and crediting baseline. They have a small effect on 

percentages of additional offsets, but do not change either the conclusions or the magnitude of the 

quantitative results. 
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Figure 3 Estimates of Marginal Abatement Cost Curves 

 
Notes: (1) Negative cost measures are excluded from the McKinsey data, as these are unlikely to be influenced by a 
carbon price. (2) The curves for Eastern Europe, Latin America, South East Asia and Former Soviet Union are 
practically indistinguishable. 

3.2 Setting the Crediting Baseline 

Regulatory Approaches 

I assume that the regulator sets a dynamic crediting baseline in order to minimize the errors in 

predicting BAU emissions. In other words, BAU is estimated as a function of exogenous variables 

such as population or GDP. The formula is determined ex ante, but the absolute level of the 

baseline is only known ex post once GDP and other relevant variables are observed. I assume that 

the crediting baseline is set as a percentage of estimated BAU, and simulate crediting baselines of 

between 70% and 130% of estimated BAU.  

I simulate three horizon years of one, five and ten years forward respectively. This corresponds to 

the hypothetical implementation of sectoral no-lose targets in the years 2006, 2002 and 1997. With 
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the more distant horizon years, prediction errors might be expected to increase considerably. Hence, 

although a one-year horizon period is unrealistic in practice (apart from anything, it would only leave 

one year for a country to implement emission reduction measures), it is useful in showing the effects 

of more accurate predictions. In all cases, the compliance period is taken to be the year 2007, the 

most recent year for which IEA emissions data by sector are available. 

As discussed below, I choose a plausible specification for estimating BAU as a function of GDP, 

energy prices and related variables. It seems reasonable to think that the UN or another regulator 

would adopt a similar econometric approach. However, it is possible that the regulator might, 

through luck or econometric skill, achieve greater accuracy in estimating BAU. For this reason, the 

Appendix provides details of sensitivity tests using an approximate upper bound for predictive 

accuracy. Here, I estimate 1,342,276 models for each horizon period and selected the one with 

lowest mean square error for an out-of-sample prediction in 2007. 

This upper bound leads to a modest improvement in predictive accuracy, as shown in Figure 4. 

However, as detailed in the Appendix, there is no substantive impact on the simulation results. 

It is also plausible that the regulator would choose an approach that results in lower predictive 

accuracy. One possibility is to adopt a politically negotiated crediting baseline, for example a 

“contraction and convergence” agreement under which per capita emissions from all countries 

converge by 2050 or 2100 at a level that achieves a long-term atmospheric stabilization target. 

Another possibility is to use an intensity baseline, under which the regulator estimates BAU 

emissions

! 

ˆ z it
0  (or log emissions) in compliance period t only as a function of changes in GDP from 

the current period t0: 

! 

ˆ z it
0 = zit0

+ " GDPit #GDPit0( ) 

Neither the politically negotiated nor the intensity baseline option is considered further in this paper. 

These approaches both result in much larger prediction errors (results not shown), and thus would 

render sectoral crediting mechanisms even less attractive than under the dynamic baseline approach 

presented in the remainder of this paper.  
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Estimating BAU Emissions 

I estimate BAU emissions as a function of GDP (measured at purchasing power parity in 2000 U.S. 

dollars); GDP from manufacturing (MANUF); final consumption expenditure (FINCON); crude oil 

price (OIL); gasoline price at the Rotterdam spot market (GAS); and time (TIME). I also include a 

lagged dependent variable. The inclusion of manufacturing GDP accounts for the potential greater 

emissions intensity of manufacturing activity compared to a services-based economy, due to freight 

transportation activity. The inclusion of final consumption expenditure may control for influences 

on GDP that do not directly affect transportation demand, such as petroleum exports. The time 

trend captures improvements in technical efficiency. The dependent variable is per capita 

transportation emissions (TPTCO2PC), and so I do not include population as a predictor. Data are 

from the International Energy Agency’s (2009a) databases and the UN National Accounts database 

(United Nations 2010). 

I estimate a small number of plausible specifications for a one, five and ten year horizon period (i.e., 

using only data through 2006, 2002 or 1997 respectively). Table 1 shows these models, which consist 

of two fixed-effects and two first-differenced specifications, each with a full and more parsimonious 

set of predictor variables. I also estimated fixed-effects models with country-specific coefficients for 

OIL, GDP and the lagged dependent variable, but these performed the worst in predictive terms 

(results not shown). The fixed-effects models include an AR(1) error term. All variables except time 

enter in log form, with retransformed predictions made using Duan’s smearing estimate (Cameron 

and Trivedi 2009: 103). Note that the inclusion of various lagged variables and quadratic and cubic 

terms makes it difficult to interpret the coefficients directly, and so it comes as no surprise that many 

do not have the sign that one might expect from a cursory glance. 

For each horizon period, I assume that the regulator picked the model with the best predictive 

performance (lowest population-weighted mean square error for the out-of-sample prediction in 

2007), either through skill or luck. Predicting one year out, there is little to choose between the 

models, but the full fixed effects model performs best in predictive terms. Predicting over longer 

horizon periods, predictive performance declines substantially and the parsimonious fixed effects 

models (6) and (10) perform best.
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Table 1  Model Specifications to Estimate Business as Usual Emissions 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

 1 year horizon (data through 2006) 5 year horizon (data through 2002) 10 year horizon (data through 1997) 
Lag* Log TPTCO2PC 0.818 0.844 -0.0324 -0.0228 0.0315 0.0320 0.0140 0.0161 0.0296 0.0386 0.0313 0.0425 
 (0.00856) (0.00737) (0.0159) (0.0153) (0.0171) (0.0166) (0.0165) (0.0160) (0.0239) (0.0227) (0.0227) (0.0215) 

Log GDP 0.880 0.392 -4.318 0.328 -2.434 0.415 -4.495 0.361 -2.376 0.450 -4.095 0.431 

 (0.672) (0.0322) (2.117) (0.0337) (2.465) (0.0410) (2.512) (0.0400) (3.221) (0.0495) (3.146) (0.0478) 
Lag 1 Log GDP -0.251 -0.278 0.258 0.247 0.198 0.193 0.197 0.186 0.186 0.169 0.135 0.127 

 (0.0350) (0.0323) (0.0355) (0.0336) (0.0398) (0.0387) (0.0390) (0.0380) (0.0508) (0.0487) (0.0482) (0.0460) 
Log2 GDP -0.0513  0.536  0.336  0.567  0.317  0.512  

 (0.0791)  (0.251)  (0.291)  (0.297)  (0.384)  (0.374)  

Log3 GDP 0.00162  -0.0211  -0.0137  -0.0225  -0.0126  -0.0199  
 (0.00307)  (0.00982)  (0.0114)  (0.0116)  (0.0151)  (0.0147)  

Log MANUF 0.00217  0.0396  0.0142  0.0300  0.0449  0.0502  
 (0.00902)  (0.0184)  (0.0202)  (0.0199)  (0.0260)  (0.0249)  

Log FINCON 0.0250  0.182  0.173  0.182  0.199  0.187  

 (0.0209)  (0.0304)  (0.0344)  (0.0336)  (0.0438)  (0.0414)  
Log OIL -0.0207 -0.0124 -0.0333 -0.00984 -0.00668 -0.00970 -0.00446 -0.00745 -0.0244 -0.0103 -0.0191 -0.00705 

 (0.0248) (0.00432) (0.0237) (0.00649) (0.0251) (0.00817) (0.0242) (0.00777) (0.0302) (0.0105) (0.0289) (0.00948) 
Log GAS 0.00287  0.0485  0.0106  0.0120  0.0419  0.0412  

 (0.0274)  (0.0276)  (0.0297)  (0.0286)  (0.0394)  (0.0378)  

TIME -0.00356 0.000969 0.0274 0.00954 0.000144 0.00706 0.0183 0.00960 -0.0481 0.00876 -0.000178 0.00912 
 (0.00232) (0.000253) (0.00819) (0.00220) (0.0189) (0.00184) (0.00967) (0.00239) (0.0270) (0.00239) (0.0150) (0.00275) 

TIME2 7.09e-05  -0.000294  0.000108  -0.000150  0.000909  0.000190  
 (3.54e-05)  (0.000124)  (0.000266)  (0.000154)  (0.000407)  (0.000251)  

Constant -1.615 0.0109   7.452 0.644   8.059 0.494   

 (1.817) (0.0719)   (1.175) (0.0633)   (1.827) (0.0945)   

Country fixed effects? Yes Yes No No Yes Yes No No Yes Yes No No 

Differenced? No No Yes Yes No No Yes Yes No No Yes Yes 

! (autocorrelation coefficient) .032 .018   .829 .836   .794 .803   

N 3809 4162 3809 4162 3015 3194 3015 3194 1898 2048 1898 2048 

R-squared .989 .990 0.078 0.066 .834 .833 0.069 0.060 .843 .851 0.079 0.072 

RMSE for 2007 prediction** 31.2 32.0 31.5 32.3 90.0 85.5 100.9 102.4 264.8 111.6 203.4 150.8 
Standard errors in parentheses 
*Dependent variable is lagged one year (models 1 through 4), five years (models 5 through 8) and ten years (models 9 through 12) respectively 
** Non-Annex I countries only, weighted by population. 
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Predictive Performance 

Figure 4 provides kernel density plots that show the predictive performance of the models, in terms 

of the distribution of percentage errors in the estimate of BAU for 2007 for each non-Annex I 

country. For comparison, the approximate upper bound (discussed in the Appendix) is also shown.   

The ability of the regulator to predict BAU emissions declines precipitously as the horizon year 

extends and the regulator needs to predict further in the future. While reasonable accurate 

predictions (within about 5%) can be made with a one-year horizon period, this is not the case when 

predicting five or ten years out. The approximate upper bound does not markedly improve 

predictive performance, suggesting that the particular econometric specifications employed here are 

not at fault. Rather, the issue is the inherent unpredictability of transportation emissions in rapidly 

growing developing countries.  

Figure 4 Errors in Predicting BAU Emissions 
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4 Simulation Results 

4.1 Illustrative Scenarios 

Figure 5 illustrates the essential structure of the results through showing the impacts of alternative 

crediting baselines for two scenarios. The first, shown in the two left panels, is a highly optimistic 

scenario – a one-year horizon period which minimizes the prediction error, coupled with a high 

carbon price of $50 per tonne of CO2 reduced. The second, shown in the two right panels, is a more 

realistic scenario using a five-year horizon period and a carbon price of $20. In each case, the 

crediting baseline is set as a percentage of estimated BAU, ranging from 70% to 130%. 

The top left panel (optimistic assumptions) clearly illustrates the tradeoff between efficiency and 

transfer costs, and how increasing the generosity of the baseline improves efficiency at the expense 

of greater transfers. (Recall that efficiency is achieved when all countries opt in. Transfer costs are 

calculated as the volume of non-additional offsets multiplied by the carbon price, on the assumption 

that developed countries adjust their own caps downwards to reflect the supply of non-additional 

offsets.) 

With a stringent baseline of 74% of estimated BAU, all offsets are additional (light blue line), but 

just two countries, Azerbaijan and Lebanon, opt in. Below 74%, no country opts in. With a generous 

baseline of 116% of estimated BAU, almost all countries opt in (yellow line) but only 28% of the 

offsets generated are additional. The top right panel (more realistic assumptions) shows similar 

trends, but the share of additional offsets is substantially reduced. Even at the maximum level of 

additionality, which is achieved when the crediting baseline is set at 83% of estimated BAU, less than 

one-quarter of offsets are additional. 

Both scenarios also indicate that it is difficult to secure net reductions in global emissions (red line). 

In the left panel, net reductions are maximized through setting the crediting baseline at 92% of 

BAU, but even here, at 24 Mt CO2 per year the volume is minimal and it quickly becomes negative 

as the baseline is made more generous. While emission reductions in developing countries (green 

line) grow as the baseline is made more generous and more countries opt in, this is more than 

countered by the growing volume of offsets (dark blue line) that enable higher emissions in Annex I 

countries. In the right panel, net reductions are always negative, i.e. the volume of offsets is always 



October 1, 2010 23 Millard-Ball, Adverse Selection 

greater than the volume of emission reductions in developing countries, regardless of the stringency 

of the crediting baseline. 

Note that making the crediting baseline more stringent does not guarantee a greater share of 

additional offsets, as the relationship is not monotonic. In the left panel, moving from a crediting 

baseline of 93% of estimated BAU to one of 89% reduces the share of additional offsets from 86% 

to 52%. While making the crediting baseline more stringent in this way does reduce the volume of 

non-additional offsets, it also reduces the volume of additional offsets as fewer countries opt in.  

The lower panels of Figure 5 explicitly show the efficiency gains and transfers from the same two 

scenarios. Surplus (red line) is the total economic gain from capturing lower-cost abatement 

opportunities in developing countries, assuming that the exogenously specified carbon price reflects 

constant marginal environmental damages and abatement costs in Annex I countries. It is calculated 

as the sum of areas D and E in Figure 2. Rent (blue line) is the share of this surplus that is captured 

by developing countries, i.e. area D minus area A in Figure 2. The simulation results in Figure 5 

suggest that developing countries capture the vast majority of the surplus. Separate from the surplus 

is the transfer (green line). The transfer represents payment to developing countries for non-

additional offsets; when divided by the volume of additional offsets, it gives transfer per additional 

tonne (yellow line, plotted on the right axis). 

The optimistic assumptions in the left panel suggest that there are substantial economic gains to be 

made from sectoral no-lose targets at a relatively modest transfer cost. With a crediting baseline set 

at 109% of BAU, the total surplus almost reaches its maximum of about $3.5 billion, with almost all 

of this accruing as rent to developing countries. At about $79 per additional tonne, the transfer at 

this crediting baseline is relatively large but can be reduced to less than $25 by making the crediting 

baseline slightly more stringent, while losing just a small part of the surplus. With the more realistic 

scenario in the right panel, however, these gains largely disappear. The lower carbon price reduces 

the maximum potential surplus to about $610 million, which is far outweighed by the transfers 

required to ensure that countries opt in. Even at its minimum of $62, the transfer per additional 

tonne is more than triple the carbon price, effectively quadrupling the cost of the offsets to Annex I 

countries.  
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The relative positions of the green (total transfer) and red (total surplus) lines indicate whether there 

is potential for a Pareto-improving arrangement between Annex I and non-Annex I countries. In the 

left panel, total transfers are less than the surplus for some crediting baselines, implying that it may 

be possible for non-Annex I countries to repay the transfer – leaving both sets of countries better 

off.  However, it is difficult to see how a politically feasible and practical mechanism could be 

developed to achieve this, given that it would involve some form of side payments from developing 

to developed countries.  

With the more realistic assumptions in the lower-right panel, no Pareto improvement is possible. 

That is, there is no side payment that could make sectoral crediting advantageous to pursue for both 

developed (Annex I) and developing countries, at least within the framework of the model presented 

here. 
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Figure 5 Impacts of Alternative Crediting Baselines 
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4.2 Impacts of Carbon Price and BAU Estimation 

The tradeoff between efficiency and transfer costs can be approximately captured by two variables – 

the percentage of countries opting in, and the percentage of additional offsets. The three panels in 

Figure 6 plot these two variables for a range of carbon prices – $5, $20, $40 and $60 per tonne of 

CO2 reduced, indicated by the different dashed lines. Each panel uses an alternative horizon period 

(from left to right: one, five and ten years). Thus, prediction errors tend to increase when moving 

from the left towards the right panel. 

First, note that the decisions of countries to opt in are relatively stable. They hardly change with the 

carbon price, although there is some flattening of the curve as prediction errors increase. This 

flattening happens as the increased variance of prediction errors means that more countries receive a 

baseline of more than 100% of actual (not necessarily estimated) BAU, and thus will opt in at any 

carbon price.  

The percentage of additional offsets, in contrast, exhibits large shifts in response to relatively small 

changes in either prediction errors or carbon prices. As noted above, making the crediting baseline 

more stringent (a lower percentage of estimated BAU) does not always increase the proportion of 

additional offsets. At the lowest carbon prices, additionality is somewhat of a lost cause, as the 

amount of abatement induced and thus the volume of additional offsets is small in relationship to 

the volume of non-additional offsets, the latter being by definition independent of the carbon price. 

At a price of $5 per ton of CO2 reduced, it is rare for additional offsets to account for more than 

10% of the total offset supply, and then only in the case of the one-year horizon where prediction 

errors are small. 
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Figure 6 Alternative Price Scenarios 
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4.3 Optimized Crediting Baselines 

In this section, I return to the three potential objectives of the UNFCCC or other regulator, 

discussed in Section 2.2. For each objective (maximize average offset quality, minimize global 

emissions and maximize efficiency), I calculate the optimal crediting baseline (as a percentage of 

estimated BAU, constrained to be within 70% and 130%) for the one- and five-year horizon periods. 

Results are calculated for prices of between $5 and $60 in increments of $5. Note that these results 

are ex post optimal, in that the regulator may not be able to achieve them without knowing the 

precise emissions-weighted distribution of BAU prediction errors. 

In these scenarios, the offset quality objective is usually best served by setting a very stringent 

crediting baseline of just over 70%. In the optimistic scenario shown on the left panel, the regulator 

can ensure that all offsets are additional, except at the lowest carbon prices of $5 or $10, but at the 

expense of just one or two countries opting in (depending on the price). The more realistic scenario 

(right panel), however, shows that this success in ensuring additionality is difficult to sustain as BAU 

prediction errors increase. At low-to-moderate carbon prices of $30 or less, it is impossible to ensure 

that more than one-third of offsets are additional. There is also a high efficiency penalty for 

promoting offset quality, with less than one-quarter of countries opting in under this scenario. 

Minimizing global emissions requires the regulator to set a slightly different but still stringent 

baseline, at the price of generating more non-additional offsets. The efficiency objective, meanwhile, 

requires the baseline to be set as generously as possible to maximize the emissions-weighted number 

of countries that opt in. The tradeoff is a very high transfer payment of more than $150 per 

additional tonne in most instances. Depending on the horizon period and the carbon price, the total 

transfer can exceed $38 billion per year in payment for non-additional offsets.  
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Figure 7 Optimized Crediting Baselines 
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4.4 Reducing Information Asymmetries 

Information asymmetries between the regulator and individual developing countries drive the 

tradeoff between efficiency and transfer costs, as discussed in Section 2. Here, I relax this 

assumption by increasing the information available to the regulator, so that the regulator estimates 

BAU as 

! 

ˆ z i
0 = zi

0 + "#i,  " $ [0,1]. In Sections 4.1 through 4.3, ! = 1, while ! = 0 represents the 

perfect information case.  

Figure 8 shows the impacts of varying ! for one of the scenarios presented in Section 4.3 (five-year 

horizon), using the three alternative regulatory objectives. In the left panel, the regulatory objective 

is maximizing offset quality, or the percentage of additional offsets. In the right panel, the regulator 

seeks to maximize global emission reductions, and in the lower panel, to maximize efficiency. (The 

discontinuities in the right panel are due to the extreme sensitivity of opt-in decisions to small 

changes in the crediting baseline under perfect information. At $20/tonne, increasing the crediting 

baseline from 96% to 100% of estimated (and actual) BAU increases the proportion of countries 

opting in from 0% to 100%.) 

Even substantial improvements in the regulator’s predictive ability do not necessarily have a 

commensurate impact on efficiency (as indicated by opt-in decisions) or transfer costs (as indicated 

by the percentage of additional offsets), particularly when carbon prices are low. Except where 

information asymmetries are completely eliminated (! = 0), a regulator that maximizes offset quality 

will still set relatively low baselines so that few countries (here, never more than 21%) opt in. Where 

the regulator maximizes efficiency, improvements in predictive ability have little impact on the 

percentage of additional offsets. The regulator still sets a very generous baseline in order to 

maximize the percentage of countries that opt in.   



October 1, 2010 31 Millard-Ball, Adverse Selection 

Figure 8  Impact of Reduced Information Asymmetries 

Note: solutions for perfect information cases are not 
unique, and the most stringent crediting baseline that 
optimizes against the objective is shown here. 
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5 Conclusions 

In principle, sectoral no-lose targets are a compelling mechanism to provide incentives for emission 

reductions in developing countries. However, their feasibility is conditional on the ability of an 

international regulator to make reasonably accurate predictions of business-as-usual emissions. The 

results presented in this paper suggest that, at least for the transportation sector, the uncertainties in 

predicting business-as-usual are extremely large relative to expected abatement, rendering sectoral 

no-lose targets an unattractive option.  

The efficient solution requires setting an extremely generous baseline to encourage as many 

countries as possible to opt in. The baseline must be generous enough to compensate for the 

regulator’s prediction error. However, in this case, almost all of the resultant offsets will be non-

additional. If Annex I countries do not tighten their own emission caps in response, which is 

perhaps the most likely outcome, global emissions will be higher on the order of 500 Mt CO2 per 

year. If Annex I caps are tightened, then environmental impacts are avoided but large transfers 

(payment for non-additional offsets) that can exceed $10 billion per year are required. For 

comparison, the total mitigation assistance pledged under the Copenhagen Accord was just $30 

billion. 

The large transfer payments may be justifiable from an ethical or equity point of view, in that they 

will tend to flow from some of the largest emitters to countries that bear little historical 

responsibility for CO2 emissions. Politically, however, monetary transfers of this magnitude are 

almost certainly unacceptable, even if it were politically feasible to tighten emission caps in Annex I 

countries – itself a highly questionable assumption. Moreover, as BAU cannot be calculated ex post, 

neither can additionality or the amount of transfer to a particular country; thus, transfers cannot be 

made in lieu of direct overseas development assistance for mitigation or adaptation.  

An alternative regulatory approach would be to focus not on efficiency, but on environmental goals 

or minimizing transfer payments. The regulator might seek to maximize global emission reductions, 

or the percentage of additional offsets. These objectives are particularly attractive in a world in 

which Annex I targets are fixed, or in which large transfer payments are politically unacceptable. 

However, such an approach will leave a sectoral no-lose targets mechanism largely irrelevant, as the 



October 1, 2010 33 Millard-Ball, Adverse Selection 

baseline would be set so stringently that few countries opt in.  At low carbon prices, moreover, even 

such stringent baselines are insufficient to ensure that most offsets are additional. 

The results here assume that governments can pass on the carbon price signal in full to firms and 

consumers, or enact regulations to achieve the same goal. They assume that governments have a 

long-term outlook rather than heavily discounting future outcomes beyond their period in office. 

They ignore the potential for national governments to manipulate emissions data or the variables 

that are used in calculating the dynamic estimate of BAU. They also assume that both the regulator 

and individual developing countries have perfect information on abatement cost curves. To the 

extent that these assumptions do not hold, the efficiency/transfer tradeoff may be even starker than 

suggested here. The transport sector suffers from numerous pricing and other distortions, not least 

fuel subsidies, and so it is perhaps naïve to believe that governments will respond in an efficient 

manner to a CO2 price signal. 

The results do rely on information asymmetries between the regulator and national governments. If 

national governments are equally bad as the UNFCCC at predicting BAU, no adverse selection will 

occur, although some non-additional offsets will still be generated. However, in practice, 

governments will be able to predict significantly better than an international regulator: not least, they 

know what policies they intend to implement under BAU, and can observe the trajectory of 

emissions after the baseline is set. Moreover, countries with little or no predictive ability are likely to 

be those without the institutional capacity to respond to a carbon price signal, meaning that sectoral 

no-lose targets will have little impact in any case. 

The inability to make precise predictions about transportation emissions, particularly over a 5 to 10 

year time horizon, is hardly surprising. Part of the prediction difficulties may be due to errors in 

measuring transport emissions, but this bodes equally poorly for the feasibility of sectoral crediting 

mechanisms. And even without the restrictions imposed here that exclude variables such as vehicle 

ownership and infrastructure investment, the predictions of regional travel demand models often 

diverge significantly from realized vehicle travel and gasoline consumption. In the relatively static 

and data-rich setting of the U.S., predicted vehicle travel can differ from the actual values by 6% 

(Rodier 2004; see also Flyvbjerg et al. 2005; Flyvbjerg et al. 2006; Transportation Research Board 

2007). Despite a sophisticated energy modeling system, aggregate five-year U.S. transport energy 
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forecasts were off by an average of 4.5% during the 1980s and 1990s (Winebrake and Sakva 2006; 

see also Fischer et al. 2009). 

Nor is the problem of predictive performance limited to transportation, which suggests that similar 

analyses might reveal problems of adverse selection in other sectors. Even in those considered more 

“straightforward”, such as the electricity generation sector with its uniform product, there are large 

uncertainties in estimating baselines (Zhang et al. 2006). Thus, while this paper analyses only the case 

of transportation, it would be wise to be cautious about the feasibility of similar crediting 

mechanisms in other sectors. 

Market mechanisms such as sectoral no-lose targets and project-level CDM have the theoretical 

attraction of equalizing marginal abatement costs across sectors and across countries. Critiques of 

these approaches to reducing emissions in developing countries have already identified a wide range 

of challenges, such as inattention to sustainable development cobenefits; the focus on shorter-term, 

measurable projects; and payment of the market clearing price rather than incremental cost for 

emission reductions, which reduces the abatement that can be secured for a given sum of money. 

This paper provides further evidence that the more we study offsets and similar crediting 

mechanisms, the more problems we uncover. Other climate policy instruments such as grant 

programs may be less efficient in principle, but more robust in practice.  
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Appendix: Sensitivity to Estimates of BAU Emissions 

The estimates of business-as-usual (BAU) emissions employed here, upon which the crediting 

baseline is predicated, correspond to a method that would likely be used by a regulator in practice. 

However, the regulator might estimate an alternative specification with better predictive 

performance, either through luck or econometric skill. In this appendix, I therefore estimate an 

approximate upper bound on the regulator’s predictive ability in order to suggest how sensitive the 

results are to more accurate predictions of BAU.  

I estimate a total of 1,342,276 specifications for the three horizon periods (i.e., using only data 

through 1997, 2002 or 2006), and select the one with lowest population-weighted mean square error 

for an out-of-sample prediction in 2007. As with the plausible specification discussed in the main 

text, the crediting baseline is then set as a percentage of estimated BAU. 

Table A-1 shows the universe of 12 specifications and 19 sets of predictor variables that are used in 

the search. The total number of specifications estimated (1,342,276) is substantially less than these 

values imply (219 sets of predictors * 12 specifications * 3 horizon periods = 18,874,368) for two 

reasons. First, some combinations of predictor variables are assumed to be mutually exclusive or 

would be perfectly colinear: examples include country-specific GDP and regional GDP, and 

variables in untransformed and log form. Second, some specifications failed to converge.  

Where a log dependent variable specification was used, predictions were made with Duan’s smearing 

estimate (Cameron and Trivedi 2009: 103).  

Table A-2 shows the specifications of the models with the lowest mean square error in the out-of-

sample prediction for 2007. While all the models include GDP in various forms and lagged 

dependent variables, there is no clear specification that performs best across all horizon periods. 

Nor is there any obvious rationale to choose these three models in the absence of ex post data on 

predictive performance. This simply highlights the difficulties for the regulator in selecting the best 

predictive model ex ante.  

Figure A-1 shows the simulation results using predictions of BAU from these approximate upper 

bounds; a crediting baseline set between 70% and 130% of estimated BAU; and various carbon 

prices. These simulations parallel those presented in Figure 6. As before, the figure illustrates the 
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tradeoff between efficiency and transfer costs as indicated by two variables – the percentage of 

countries opting in, and the percentage of additional offsets. The three panels in Figure A-1 plot 

these two variables for a range of carbon prices – $5, $20, $40 and $60 per tonne of CO2 reduced, 

indicated by the different dashed lines. Each panel uses an alternative horizon period (from left to 

right: one, five and ten years). Thus, prediction errors tend to increase when moving from the left 

towards the right panel. 

The comparison between Figure A-1 and Figure 6 indicates that the improvements in predictive 

accuracy from using the approximate upper bound bring a minimal payoff in terms of efficiency 

gains and reduced transfer costs. In the 5- and 10-year horizon scenarios, it is rare for more than 

50% of offsets to be additional, even at the highest carbon price of $60 per tonne of CO2 reduced. 

The shapes of the curves relating opt-in decisions to the generosity of the crediting baseline are 

almost indistinguishable between Figure A-1 and Figure 6, indicating that the improvement in 

predictive power has almost no benefit for efficiency.  

These sensitivity tests suggest that the results are not driven by the econometric specifications for 

predicting BAU employed in the main body of the paper. Rather, the obstacles to sectoral crediting 

mechanisms for transport can be seen as product of the inherent difficulties in predicting BAU 

emissions, with prediction errors being large in relation to expected abatement. 
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Table A-1 Combinations of Models Estimated 

Variable Sets GDP   Lag GDP GDP2 GDP3 GDP*Annex I  
 

 GDP*Region  
(10 variables) 

GDP*Country 
(97 variables) 

Log GDP MANUF FINCON 

 OIL GAS Log OIL and  
Log GAS 

Lag OIL and  
Lag GAS 

Lag log OIL and  
Lag log GAS 

 Lagged dependent 
variable* 

TIME TIME2 TIME*Country 
(97 variables) 

 

Specifications    1 

! 

yit =" + Xit# + $it    Basic linear regression model 
2 Same as (1), but prediction is calculated as difference from last in-sample observation** 

3 

! 

log yi =" + Xit# + $it        Basic linear regression model with log DV 

4 Same as (3), but prediction is calculated as difference from last in-sample observation** 

5 

! 

yit =" i + Xit# + $it  Fixed effects model 

6 Same as (5), but prediction is calculated as difference from last in-sample observation** 

7 

! 

log yit =" i + Xit# + $it  Fixed effects model with log DV 

8 Same as (7), but prediction is calculated as difference from last in-sample observation** 

9 

! 

yit = " i + Xit#+$ it ,     $ it = %$ it&1 + µit  Fixed effects model with AR(1) term 

10 

! 

log yit = " i + Xit#+$ it ,     $ it = %$ it&1 + µit  

 

Fixed effects model with AR(1) term and log DV 

11 

! 

yit " yit"1 = Xit " Xit"1( )# + $it  First differenced model 

12 

! 

log yit " log yit"1 = Xit " Xit"1( )# + $it  First differenced model with log DV 

DV = dependent variable      
Country-specific coefficients (e.g. GDP*Country) are for Annex 1 countries only. 

*Dependent variable is lagged 1 and 2 years (for 1-year horizon), 5 years (for 5-year horizon) and 10 years (10-year horizon) 

**Calculated by adding the residual from the last in-sample observation to the prediction. 
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Table A-2  Estimates of BAU – Best-Case Dynamic Baseline 

 1-year horizon  
(data through 2006) 

5-year horizon  
(data through 2002) 

10-year horizon  
(data through 1997) 

Specification (3) –  Linear regression 
with log DV 

(4) –  Linear regression 
with log DV. Residual from 
last in-sample observation 

added to prediction 

(10) – Fixed effects with 
AR(1) term and log DV 

GDP   0.000182 
   (2.00e-05) 
Lag GDP  -6.85e-06 1.01e-05 
  (8.05e-06) (5.36e-06) 
GDP2 -7.69e-10 -4.39e-09 -6.29e-09 
 (9.67e-11) (2.50e-10) (9.13e-10) 
GDP3  8.76e-15 5.22e-14 6.86e-14 
 (1.31e-15) (3.71e-15) (1.30e-14) 
GDP*Annex I   1.94e-05 
   (1.04e-05) 
MANUF  -3.87e-05 -1.28e-05 
  (8.25e-06) (1.80e-05) 
FINCON -6.08e-06 -2.83e-05  
 (1.76e-06) (4.09e-06)  
OIL   0.00132 
   (0.000891) 
GAS   -0.00142 
   (0.00102) 
Log OIL -0.0388   
 (0.0288)   
Log GAS 0.0523   
 (0.0317)   
Lag log OIL 0.0560   
 (0.0283)   
Lag log GAS -0.0815   
 (0.0333)   
time2 1.43e-06 7.93e-06  
 (5.02e-06) (1.08e-05)  
Lag 1 dependent variable 0.973   
 (0.0161)   
Lag 2 dependent variable -0.00984   
 (0.0158)   
Lag 5 dependent variable  0.813  
  (0.00772)  
Lag 10 dependent variable   0.0468 
   (0.0241) 
GDP*Region Yes Yes No 
Constant 0.209 0.764 4.886 
 (0.0360) (0.0342) (0.0371) 
! (autocorrelation coefficient)   .798 
Observations 3839 3254 1898 
R-squared 0.990 0.958 0.784 
RMSE for 2007 prediction* 26.2 80.3 95.5 
Standard errors in parentheses    
* Non-Annex I countries only, weighted by population 
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Figure A-1 Alternative Price Scenarios (Approximate Upper Bound for BAU Prediction) 
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