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Project summary 
 

Agricultural production in Indonesia is strongly influenced by the annual cycle of 
precipitation and the year-to-year variations in the annual cycle of precipitation caused by 
El Niño-Southern Oscillation (ENSO) dynamics.  The combined forces of ENSO and 
global warming are likely to have dramatic, and currently unforeseen, effects on 
agriculture production and food security in Indonesia and other tropical countries.  This 
project combined general circulation model (GCM) experiments and empirical 
downscaling models (EDMs) to assess the influence of global warming on the annual 
cycle, and on ENSO-induced changes in precipitation and agricultural production in 
Indonesia.  A risk assessment framework was then developed to evaluate how climate-
related uncertainty and probable agricultural outcomes derived from the downscaling 
model can be used in policy decision-making processes. The models focused on rice, the 
country’s primary food staple. 

The influence of global climate change and variability on regional-scale processes 
(especially precipitation) was assessed via the development of EDMs and new GCM 
simulations. The EDMs used standard statistical techniques to relate features of the large-
scale atmospheric circulation (typically well simulated by GCMs) to regional hydrology 
(not well simulated by GCMs, but with known relationships to the large-scale 
circulation). The project first developed and cross-validated the EDMs using observed 
regional precipitation over the past 50 years, as well as observed and GCM-simulated 
large-scale climate variables like winds and moisture distribution.  These EDMs were 
then applied to a few GCM-simulated climate scenarios (A1, B2) that include increased 
greenhouse gas forcing and historical patterns of ENSO variability, resulting in a set of 
regional climate scenarios for Indonesia in the mid-21st century. A model was developed 
to gauge how the annual cycle of precipitation is likely to change in Indonesian rice 
growing regions with global warming. 

A regression model was used to estimate rice production (area, yield, and total 
production) as a function of sea surface temperature anomalies (Niño 3.4 SSTAs) and 
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precipitation across different regions in Indonesia holding technology, markets, and 
policy constant. A risk assessment framework was employed to link expected changes in 
SSTAs to the timing of monsoon onset and rice output during the “season of scarcity” 
(paceklik) in 2050. The risk framework focused specifically on the likelihood of critical 
threshold exceedance, which we defined as a 30-day delay in the onset of the monsoon.   

Briefly, our results showed a marked increase in the probability of a 30-day delay 
in monsoon onset in 2050 as a result of changes in the mean climate, from 9-18% today 
(depending on the region) to 30-40% at the upper tail of the distribution in 2050. These 
results indicated the urgent need for adaptation strategies to deal with these new climate 
forecasts.  

Further work has sought to deepen our understanding of how the variability of 
climate itself might change as the mean state changes. In initial work, we assumed that 
the variability in precipitation over Indonesia due to ENSO in future climates was the 
same as in the present climate. This was a necessary assumption because only two of the 
twenty-three AR4 GCM models used to project the future climate have plausible 
representations of the ENSO phenomenon.  Progress in this aspect of the project, still 
ongoing, is detailed below. 

Key project results have been presented to the Agricultural University in Bogor 
Indonesia, the Ministry of Agriculture, and the Indonesian Department of Meteorology.  
The work received quite a bit of attention in Indonesia, and was reported on the front 
page of the Jakarta Post when it was first released.  The work has also been presented at 
seminars around the U.S., and has led to numerous subsequent research activities, also 
detailed below. 
 
 
Project activities and findings 
 
 
1. Development of Indonesian climate change scenarios through downscaling models 
 
One primary goal of the project was to construct plausible scenarios for changes in 
regional precipitation and other relevant climate variables (over Indonesia under 
conditions of global warming.  Annual and interannual variations in Indonesian 
precipitation are largely determined by the annual march of the monsoon and by ENSO 
variations, both of which involve changes in the large-scale atmospheric circulation.  While 
the atmospheric response to these large-scale circulations is relatively well simulated by 
GCMs, the large-scale hydrological cycle is often poorly reproduced.  On regional scales 
(e.g., 50x50 km2) the hydrological cycle in Indonesia is in part determined by interactions 
between the large-scale circulations and the very complex and mountainous topography of 
Indonesia.  Unfortunately, the coarse grid sizes (typically 200x200 km2) of GCMs used 
to project climate change due to greenhouse gas increases do not resolve small scale, large 
amplitude topographic features.  Indeed, the whole island of Java is often left out of these 
climate models.   
 
Thus developing plausible climate change scenarios for Indonesia required developing 
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empirical downscaling models (EDMs) to relate the large-scale circulation patterns and 
moisture distribution from atmospheric GCMs to the observed regional precipitation over 
the past 50 years.  These EDMs work when (i) there is a robust relationship between 
local sub-grid scale precipitation and large-scale atmospheric variables that are resolved by 
a GCM, (ii) when there is complex topography, and (iii) when the observational records 
are of sufficient duration and quality to determine accurate empirical relationships – 
criteria all satisfied in the Indonesia case.  
 
A major focus of this project was the development and assessment of the EDMs, which 
required an estimate of actual precipitation on a provincial scale in Indonesia, and an 
ability to relate variations in precipitation to large-scale climatic variables. We developed 
two sets of regional precipitation inventories over Indonesia:  an inventory based on 
interpolated, gridded data, and a station-based inventory. The former (from the gridded 
data) was more straightforward, but suffered from inhomogeneous data records.  The 
latter (the station-based inventory) required evaluating (often individually) and combining 
station records of precipitation from 729 stations into a homogeneous data set.  The 
resulting two station inventories provided two separate, and often differing, estimates of 
provincial scale precipitation. 
 
The Edams were then constructed and tested over the observed record.  We tested seven 
different EDM methodologies using six different sets of large-scale variables.  Results 
indicated that downscaling using modeled large-scale precipitation (a technique that has 
been demonstratively useful outside of the tropics) would not work for Indonesia due to 
large biases in modeled precipitation.  In contrast, our proposed methodology of using 
large-scale variables of relevance to hydrological variability in Indonesia provided a better 
estimate of the seasonal cycle and interannual variability over the region.  Based on our 
validation of the EDMs over the observed record, we chose to use three different EDMs 
to debias and downscale output from the global climate models. 
 
Figure 1 shows our success in downscaling GCM output to match observed precipitation 
patterns in Indonesia. The left panel, which is the raw GCM output, shows the 
substantial biases of nearly all models in reproducing precipitation climatology over Java. 
The right panel, which downscales this output using one of our three EDMs, 
demonstrates how well these EDMs perform in de-biasing the GCM output.  
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Figure 1. Annual cycle of precipitation over West/Central Java (in cm per month). (a) Raw observed 
precipitation with 2s errors on the mean (thick gray line with error bars) plotted together with the raw 
precipitation output from each of the viable models contributing to the AR4 model simulations (thin gray 
lines) and the ensemble mean from those models (solid black line). This graph demonstrates the very large 
bias in the model simulations prior to downscaling. (b) As in a, but model output is downscaled using 
EDM2 (i.e., precipitation is reconstructed using large-scale 850-mb specific humidity and sea-level 
pressure). Also shown in a and b are the root mean square error averaged over all of the model simulations, 
as well as the root mean square error of the ensemble mean estimate (in parentheses), both normalized by 
the standard deviation of the observed annual cycle. Graph b demonstrates the drastic improvement in bias 
after applying the EDM, which allows the EDM model output to be used in calculating monsoon onset 
thresholds. 
 
 
Because EDMs were constructed using relationships between large-scale fields and local 
precipitation outcomes, and because we had no a priori reason to prefer one set of large-
scale fields as predictors over another, we constructed three different EDMs with which 
to project future climate: 
 

1. EDM1: 850mb specific humidity.  We chose this variable to represent possible 
changes in the hydrological cycle that arise due to mean warming.  In particular, 
a warmer climate is expected to have a more vigorous hydrological cycle due to 
the expected increase in humidity in the atmosphere (warmer air can hold more 
water than colder air).  However, specific humidity may not adequately capture 
changes in dynamical processes, such as changes to the Walker circulation. 

2. EDM2: 850mb specific humidity and sea level pressure.  Sea level pressure 
variations are strongly related to the dynamical circulation in the tropics (e.g., 
ENSO and the Walker circulation) and the seasonal cycle, but alone, this 
variable may not capture the mean moistening of the atmosphere that is 
expected with warmer temperatures. We therefore combined the physical 
process of sea level pressure with the hydrologic process of humidity generated 
by warming. 

3. EDM3: 850mb specific humidity, upper (200mb) and lower (850mb) level zonal 
winds.  Zonal winds were chosen because they represent the monsoonal shear 
line (31) and therefore correspond very strongly to variations in monsoon onset 
date.  As the monsoon sets in, the surface winds shift from easterly to westerly, 
and winds aloft shift from westerly to easterly.  Thus, upper and lower level 
winds may capture changes in monsoon onset and retreat.  Again, because this 
field does not adequately capture the hydrological cycle, we added 850mb 
specific humidity. 
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To simulate the climatological mean of the annual cycle in regional rainfall in 2050, we 
took the output from the AR4 GCM large-scale fields for the period 2000-2050, and fed 
the output into each EDM to obtain the downscaled regional precipitation for 2000-2050. 
The time series for each individual month (e.g., Jan 2001, Jan 2002 …. Jan 2050) showed 
a nearly linear trend in precipitation. As a result, we linearly interpolated the downscaled 
precipitation for each calendar month to obtain the annual cycle in regional precipitation 
for 2050.  Finally, for each month we linearly interpolated from monthly to daily 
resolution to obtain the new climatological onset day. 
 
 
2. Calculating threshold variables for risk assessment. 
 
A second main focus of our project was to develop a risk assessment model to a) identify 
a climate variable with clear effects on rice productivity in Java and Bali based on the 
observational record; b) select a threshold for this variable beyond which the loss in 
productivity was significant; and c) determine the probability of exceeding this threshold 
under current and future (2050) climate conditions. Selecting the appropriate climate 
variable and threshold was facilitated by Indonesia’s long experience with ENSO events 
and our earlier analysis of ENSO-based rainfall variability, rice production, and food 
security in Indonesia.  This earlier work underscored the important roles that variability 
in precipitation and its impacts on the timing of rice plantings and harvests play in the 
climate-agriculture story.  
 
To identify specific threshold indicators for this study, we used least-squares regression 
models that relate crop production variables (yield, area, total production by season, 
timing of planting and harvest) to observed precipitation from 1979-2004. Rice planting 
and harvesting data for West, Central, and East Java and Bali were available from the 
Central Bureau of Statistics in Indonesia on a trimester basis (January-April, May-
August, September-December) for the period 1979-2004.  Rice production data were 
available from 1982/3-2003/4. Calendar year data were re-tabulated on a September-
August crop year basis for our analysis. Precipitation variables were derived from daily 
rainfall data collected at regional rainfall stations throughout Java and Bali and reported 
in the NOAA Climate Prediction Center's Global Summary of the Day (GSOD) archive. 
 
Our analysis showed that the date of monsoon onset was a particularly good predictor of 
ensuing crop-year rice production.  We defined monsoon onset as the days past August 1 
when accumulated rainfall equals 20 cm—the amount of moisture needed for crop 
establishment. August was chosen as the start date because it is typically the driest month 
across the archipelago. The effect of onset delay, shown in Figure 2 below, was 
determined by least squares regression of detrended rice production for a given trimester 
as a quadratic function of the monsoon delay. The coefficient on the onset variable 
reflects the effect on production of delaying onset by one day (relative to the average 
onset date). To get the percent effect of a 30-day onset delay on production, we 
multiplied the coefficient by 30 and divided the total by the average production for the 
region over the entire period.   
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Figure 2.  January-April rice production in relation to monsoon onset.  Y-axis:  time-detrended production, 
1982/83-2003/4 (thousand metric tons).  X-axis:  days past Aug 1st when 20 cm of total rainfall are 
accumulated. Year labels correspond to the year of monsoon onset; production (harvest) occurs in the 
following year (January-April).  Dashed lines represent the 30-day threshold.  Left panel = West + Central 
Java.  Right panel = East Java + Bali. 
 
 
3. Assessing risks to Indonesian rice production under future climate change 
 
With parts 1 and 2 in hand, we were then prepared to assess risks to Indonesian rice 
production from future climate change, in addition to quantifying their uncertainties. 
With ENSO variability superimposed onto the projected annual cycle of precipitation for 
2050, the likelihood of exceeding the 30-day monsoon onset delay threshold increases 
significantly relative to the current period.   
 
Figure 3 shows the probability distributions of exceeding the threshold in 2050 by region, 
EDM, and emissions scenario. Each distribution reflects the combined output from 15-20 
GCMs that have been downscaled to the regional level for Java and Bali. In most cases—
with the exception of EDM3 in West-Central Java—the mean likelihood of exceeding the 
threshold in 2050 is higher than today. More importantly, the distribution indicates a 
substantially greater likelihood of exceeding the threshold for many models included in 
our analysis.  Using the A2 emissions scenario for the West-Central Java region as an 
example, one third of the GCMs downscaled with EDM1 show that the probability of 
threshold exceedance in 2050 ranges from 23% to almost 33%—notably higher than the 
current probability of 18.2%. The results are even more striking for the East Java-Bali 
region.  For the A2 scenario, all models project an increase in the probability of threshold 
exceedance above the current level of 9.1%.  One-third of the GCMs downscaled with 
EDM1 demonstrate a probability of threshold exceedance in 2050 ranging from 19.8% to 
40%.  Although the probability distributions for both regions and emissions scenarios 
generally show a greater likelihood of exceeding the monsoon onset delay threshold in 
2050, there are some models that show a reduced probability of threshold exceedance. 
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Figure 3. Likelihood of exceeding the 30-day monsoon threshold in 2050. The figures show the probability 
distribution for the three EDMs used in downscaling applied to all GCMs for each scenario. The probability 
distributions are divided into terciles, each containing output from one-third of the GCMs with the lowest, 
middle, and highest projections respectively. The thick rectangle shows the middle tercile, and the 
horizontal lines on either side show the lower and upper terciles. Fifteen GCMs ran the A2 scenario (5 
models included in each tercile), and 19 GCMs ran the B1 scenario (6-7-6 models in each tercile). The 
small arrows indicate the mean future probability for all GCMs. The vertical lines show the observed 
probability for 1983-2004. 
 
 
These results also provide insights into the nature of uncertainty in the model projections. 
Uncertainty in the future path of greenhouse gas emissions and their impact via climate 
forcing—illustrated by the differences between the A2 and B1 scenarios—are relatively 
insignificant. Less than half a century (2050) is too soon to see the broad climate effects 
of alternative technology and management approaches.  On the other hand, uncertainty in 
the response of large-scale circulation fields to increased concentrations of greenhouse 
gases, and the effect of this response on regional precipitation, are important.  The wide 
range of results among GCMs for a given EDM, and among EDMs, illustrates this 
uncertainty. Even with these areas of uncertainty, however, the bottom line is clear.  A 
30-day delay in monsoon onset, with all of its ramifications for Indonesian rice 
agriculture and food security, is very likely to occur more frequently in 2050 than it is 
today. 
 
Given that most models project an increasing likelihood of a delayed monsoon onset that 
exceeds the threshold for significant impacts on rice production, to fully quantify likely 
outcomes for rice production we then want to know how the annual cycle in precipitation 
is expected to change in response to climate change. If more rain arrived later in the 
season, and lasted well into the dry season, then perhaps the delay in monsoon onset in 
September-November would not pose a significant risk to Indonesian rice agriculture and 
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food security. Alternatively, if less rain fell late in crop season (July-August), it is quite 
possible that the soil would be drier on August 1, causing our climate threshold to be 
exceeded more frequently in the future. 
 
 

 
Figure 4: Summed precipitation for April-June (AMJ) and July-September (JAS) for the present climate 
(dashed line) and for the future predicted climate using the A2 scenario. The projected climates are shown 
as a probability distribution function, where 15 climate models have been downscaled using the three 
EDMs (for a total of 45 estimates). 
 
 
Results in this area indicated that the projected peak monsoon precipitation will increase, 
rainfall during the dry season will very likely decrease, and the ending date of the 
monsoon will not change significantly.  As a result, our existing threshold remains 
relevant, if not conservative, in 2050.   Figure 4 shows the predicted change in total 
rainfall over Java and Bali for the periods April-May-June (AMJ, when the dry season 
planting typically occurs) and in July-August-September (JAS, the later period of the dry 
season when little rice is currently planted) for the A2 scenario. The combination of all 
GCMs and EDMs used in our analysis present a clear picture: total rainfall is expected to 
increase in AMJ relative to the current pattern, but decrease in JAS. In AMJ, total rainfall 
is projected to increase by about 10% in the study regions. In JAS, however, nearly all 
models project a decline in rainfall.  Total rainfall is projected to decline by 10-25% on 
average, and by as much as 50% in West/Central Java and 75% in East Java/Bali at the 
tail end of the distributions.  In East Java/Bali, some models project total rainfall to drop 
close to zero for the JAS season. 
 
We drew three conclusions from these results.  First, the expected increase in AMJ 
rainfall would not compensate for reduced rainfall later in the crop year, particularly if 
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water storage for agriculture was inadequate.  Second, the extraordinarily dry conditions 
in JAS could preclude the planting of rice and all other crops without irrigation during 
these months by 2050.  Finally, with reduced rainfall in JAS, the starting point for 
measuring monsoon onset (August 1) will likely be even drier in the future, suggesting 
our monsoon delay threshold probably could become quite conservative for measuring 
impacts of climate variability in 2050.  An additional threshold of dry season total rainfall 
might therefore become important for future climate impact studies of Indonesian 
agriculture. 

 
 
4. Understanding the structural dynamics of ENSO with climate change 
 
In our previous work, we assumed that the variability in precipitation over Indonesia due 
to ENSO in future climates was the same as in the present climate. This was a necessary 
assumption because only two of the twenty-three AR4 GCM models used to project the 
future climate have ENSO; hence, the interannual variability in the IPCC models is 
artificially muted.  During the past year, we have been running experiments to relax this 
assumption. Specifically, we have been adding ENSO SST anomalies in the central 
Pacific to a range of projected mean state changes for 2050, and then forcing an 
atmospheric model with these SSTs to evaluate how the teleconnected signals associated 
with ENSO SST anomalies will change due to the changes in the mean state. These 
experiments have allowed an early understanding of how the impact of ENSO will 
change due to global warming due to changes in the ‘teleconnections’ (communicated 
through changing atmospheric motions) from the active ENSO region to far-field places, 
such as Indonesia .  
 
 
5. Bayesian analysis of El Niño risk related Indonesia rice production 
 
The linkages between El Niño events, monsoon onset delays, reduced rice plantings, and 
extensions of the “season of scarcity” before the main rice harvest (paceklik) are 
important for policymakers concerned with domestic food security. We constructed a 
model to forecast El Niño conditions using Bayesian analysis in order to reduce 
uncertainty for food policy analysts over the course of the ENSO cycle. Essentially, 
Bayesian analysis was used to calculate the subjective probability that a certain year will 
be an El Niño year, and to update that probability as evidence of El Niño conditions—in 
the form of sea surface temperature anomalies (Niño 3.4 SSTAs)—accumulates over the 
course of the year. For example, Figure 5 presents Bayesian forecasts of the probability 
of an El Niño event occurring based on May-September SSTA data for the years 1980-
1986; this period was chosen because of its strong El Niño and non-El Niño (neutral and 
La Niña) cycles. The figure also shows monthly SSTA data for the entire annual cycle to 
illustrate the accuracy of the forecast method. In general, Bayesian updating provides 
accurate forecasts of El Niño conditions by June/July.  
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Figure 5: Niño3.4 SSTAs (blue line and left axis), and yearly Bayesian forecasts of the 
probability of a given year being an El Niño year (red line and right axis).  Forecasts are based on 
May-September SSTAs. 
 

However, as illustrated by 1980 and 1983, the forecast involves greater uncertainty for 
years in which SSTAs are positive in late spring but fall during the course of the summer.  
Forecasts for these particular years showed a rising probability of an El Niño event 
initially, but then the probability fell towards zero. Conversely, the forecast for 1986—a 
year in which SSTAs were negative at the start of the summer but quickly rose into El 
Niño territory—took longer to reach a high probability. Uncertainty over El Niño 
forecasts always decreases as the monsoon season begins in September/October. 
 
Our analysis suggested that in years when the May to September SSTAs change 
direction, policymakers would be wise to take advantage of the Bayesian technique by 
remaining cautious in their prediction of ENSO conditions. Rather than jumping on the 
bandwagon that “an El Niño is coming” too soon, policymakers should wait until late 
August or September to confirm the climate trend. If they wrongly assume that El Niño 
conditions will prevail when in fact neutral ENSO conditions result in the end (Type II 
error), they are likely to spend unnecessary funds to import rice for the main harvest 
season—a move that could lead to excess rice in the market at a time when domestic 
farmers rely on relatively high prices for their incomes. Under such circumstances, the 
government might need to store excess rice in order to keep producer prices stable—
another costly budget decision—or they might simply let prices drop which would benefit 
consumers but hurt producers. Conversely, if policymakers remain complacent in their 
forecast that no El Niño will develop when in fact one does (Type I error), the 
consequences could be equally if not more severe. Without arranging for rice imports or 
domestic reallocation within the country, policymakers could face rice shortages, higher 
food prices, food riots, and rising malnutrition among the poor.  
 
The Bayesian forecast method developed in our study is straightforward, and we showed 
a variety of ways in which it could be improved to reduce the potential for Type I and II 
errors.  For example, information from year (t-1) can be used to inform the initial forecast 
for year (t) because, for example, there is a low probability that one strong El Niño year 
will be followed immediately by a second strong El Niño year. Additional information 
could also be used in the updating process, such as monthly SOI data or SSTA data from 
a broader geographic band (e.g., 30°N to 30°S), to inform the forecast. Finally, a more 
complex approach to Bayesian updating can be applied to ENSO forecasting by 
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combining forecasts generated from a combination of dynamic and empirical approaches, 
e.g., relying on the integration of historical information and dynamic model forecasts. We 
are currently using our Bayesian model to track the development of El Niño conditions in 
Indonesia, with the aim of advising food policy analysts of expected conditions during 
the 2009-2010 crop year.  
 
Over the longer-term, our Bayesian approach could be used to help Indonesian 
policymakers anticipate ENSO impacts in a warmer world. Given the projections in our 
study of a significant change in the annual cycle of precipitation in the region, 
policymakers could use updated climate information for adaptation; that is, they might 
want to invest in water storage facilities (reservoirs and linked irrigation systems) to take 
advantage of periods of more intense rainfall and cover longer dry periods. They also 
might want to invest in drought tolerant crops, or provide incentives for alterations in 
cropping systems that match both climate conditions and market demand. In this 
particular case, the Bayesian null hypothesis would be a change in the annual cycle of 
precipitation that affects crop production, food availabilities, and incomes throughout the 
year (as projected in Figure 3). The prior would be established on the basis of the 
observed annual cycle going back in time for decades, and this prior would be updated 
with new information as the years progressed. The likelihood of the null hypothesis being 
true could thus increase over time as more information became available on the pattern of 
rainfall over the course of the year. This analysis is very different from the Bayesian 
analysis of El Niño events described above for the short term, because a long-run change 
in the climate’s mean state has not yet been fully established (beyond historical patterns 
of variability). 
 
 
Training, outreach, and related activities 
 
The research on Indonesia outlined above gave rise to many teaching and outreach 
activities, in addition to provoking new research directions and output.  
 
1. Collaboration and dissemination of research with Indonesian colleagues 
 
Throughout the course of the project, we communicated our results to the Food Security 
Division of the Ministry of Agriculture (DEPTAN), the Planning Ministry 
(BAPPANAS), and the Central Bureau of Statistics (BPS). In November 2006 we 
formally presented the key results of our climate change research to the Agricultural 
University in Bogor Indonesia, the Indonesian Ministry of Agriculture in Jakarta, and the 
Indonesian Department of Meteorology in November 2006. Since the project ended, we 
have continued to update our Indonesian colleagues with climate information, and they 
are using our short-term forecasts for food policy planning. Overall, our work received 
quite a bit of attention in Indonesia, and was reported on the front page of the Jakarta 
Post when our first main paper (Naylor et al, 2007, in PNAS) was first released. We also 
presented various aspects of the work at numerous environmental and climate seminars 
around the US.  
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2. Extensions to the Philippines and China: A regional study of ENSO-rice relationships 
 
Based directly on our Indonesia work, we conducted similar research in the Philippines 
and showed that El Niño conditions similarly cause drought conditions and reduced rice 
production (Roberts et al., 2009). We also received an additional NSF grant to extend the 
research to China (NSF grant number 0624359), a project entitled “Impacts of El Niño-
Southern Oscillation (ENSO) Events on Chinese Rice Production and the World Rice 
Market”.  Early analysis suggested the ENSO in China would be the mirror image of 
Indonesia and the Philippines – that is, that warm ENSO events increase rainfall in China, 
raising rice production, with cool ENSO events doing the reverse. As a result, the 
regional rice market would be neutral, implying no significant increase in rice price 
during an El Niño year. 
 
Building on our risk assessment framework, the China work seeks to quantify these 
effects of ENSO on Chinese rice agriculture, and to adapt a global trade model to 
understand how ENSO effects regional rice markets, through its effects in China, 
Indonesia, and the rest of Southeast Asia. We are in the final year of that grant. 
 
3. Outreach of methods to the Wisconsin Initiative on Climate Change Impacts (WICCI). 
 
Relying on the experiences that grew out of our NSF work, PI Vimont helped design a 
new initiative to assess the impacts of climate change in Wisconsin - the Wisconsin 
Initiative on Climate Change Impacts (WICCI).  Our experience through the NSF grant 
demonstrated the need for a collaborative, iterative structure between climate scientists, 
impacts scientists, and policy makers in the impacts assessment process rather than a top-
down framework in which the climate information drives the research.  As such, Vimont 
helped to develop a "boundary institution" that facilitates interaction between climate 
science, impacts science, and policy from the highest levels in the state (the WICCI 
Advisory Council has had input from the Wisconsin Governor's office, and includes 
leaders of Wisconsin's industry, NGO's, and the political arena) to individual working 
groups (each of the eleven currently active working groups consists of a team of scientists 
who collectively define the research problem - just as was done in our NSF proposal).  
Since June 2007, the WICCI has grown from a simple idea into a state-wide initiative that 
partners the University of Wisconsin with the Wisconsin Department of Natural 
Resources, and numerous other state agencies and institutions.  The WICCI now includes 
collaborations with over 120 scientists around the state.  The rapid expansion of the 
project can largely be attributed to the institutional framework that borrowed heavily 
from the experience gained from our NSF project.  In short, the WICCI allows a type of 
interdisciplinary research to occur that could not happen in the absence of a trans-
boundary institutional framework (a similar framework existed on a much smaller scale 
in our NSF project). 
 
WICCI is now a catalyst for new proposals on climate impacts to federal and state 
agencies.  The WICCI has secured funding from the Wisconsin Focus on Energy 
Program to develop a set of downscaled daily precipitation and maximum and minimum 
temperature over Wisconsin using a novel statistical methodology that is motivated by 
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the EDMs in the present project.  This climate work has also motivated involvement in 
five additional proposals (as collaborators in providing climate information) to federal 
agencies.  Additionally, the Wisconsin Department of Natural Resources is now 
allocating employee time to work on WICCI.  Vimont has given 10-15 talks in the last 
two years on climate impacts in Wisconsin, and on the climate impacts assessment 
process.   
 
4. Teaching and development 
 
We had both positive and negative experiences on the teaching and development side of 
the grant. On the positive end, the interdisciplinary research framework we developed 
was used in graduate training in our three universities: 1) at Stanford University in the 
Interdisciplinary Ph.D. program in Environment and Resources (IPER) and the 
Department of Environmental Earth Systems Science; 2) at the University of 
Washington’s Earth Institute and the Department of Atmospheric Sciences; and 3) at the 
University of Wisconsin in the Center for Climatic Research (part of the Institute for 
Environmental Studies) and the Department of Oceanic and Atmospheric Sciences. In 
addition, Naylor, Battisti, and Vimont frequently traveled to each other’s universities to 
team-teach classes on the topic. In addition, the work was used as a template for teaching 
interdisciplinary research methods in Stanford University’s undergraduate Goldman 
Honors Program in Environmental Science, Technology, and Policy, and in the National 
Centre of Competence in Research (NCCR) Summer School, sponsored by the Swiss 
National Science Foundation.  
 
We had less success with turning the project into specific PhD theses. Naylor mentored a 
student for two years who was then diagnosed with an illness that prohibited her from 
traveling to Indonesia for fieldwork. Similarly, Vimont mentored a student for two years 
who had family-related health issues and had to stop out. Nonetheless, Naylor was able to 
mentor a post-doc (Michael Mastrandrea, mainly on the Bayesian analysis) and Battisti 
and Vimont also took on a student for related research, Rob Nicholas, who will finish his 
PhD in summer 2010. All of the PIs also mentored a pre-doc at Stanford, Marshall Burke, 
who co-authored the lead publication in PNAS and will start a PhD in August 2009 in the 
Agriculture and Resource Economics Department at the University of California in 
Berkeley (awarded the top scholarship).  
 
 
5. Extension of research to include temperature effects of global climate change. 
 
The PIs have continued to collaborate and launch new areas of research together that are 
not directly related to this topic. For example, Battisti and Naylor collaborated on a study 
assessing future climate impacts on agriculture, using historical analogies to gauge 
damage in the absence of adaptation (Battisti and Naylor, 2009). Battisti and Vimont 
have begun a new NOAA-funded project to examine how ENSO itself will change due to 
global warming (extensions are planned to include the teleconnected impacts of a 
changed ENSO on Indonesia, China and the southwest US). The team expects to continue 
collaborations in new areas of climate science, agricultural production, and food security 
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in the future. 
 
6. Advances in climate science and our understanding of climate change science. 
 
We found that the climate models systematically project precipitation in the Indonesian 
monsoon will become more intense and – more important and more serious in terms of 
impacts – the rainy season will become shorter and the subsequent dry season will 
become drier.  Our approach to understanding changes in tropical precipitation was novel 
and our findings were somewhat surprising and robust. The success of our approach has 
inspired others to re-examine monsoons elsewhere using a similar framework (prior to 
our work, the IPCC had only focused on the changes in the rate of rainfall during the 
rainy season). This has led to some major advances in understanding how monsoons 
throughout the tropics will change due to global warming. In turn, this has already led to 
a large reduction in the uncertainty of the projections of tropical precipitation patterns – 
in particular, in the Sahel – over those expressed only two years ago in the most recent 
IPCC report.  
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