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Abstract

Using Monte Carlo simulations, this paper evaluates the bias properties of common es-

timators used in growth regressions derived from the Solow model. We explicitly allow for

measurement error in the right-hand side variables, as well as country-specific effects that are

correlated with the regressors. Our results suggest that using an OLS estimator applied to a

single cross-section of variables averaged over time (the between estimator) performs best in

terms of the extent of bias on each of the estimated coefficients. The fixed-effects estimator and

the Arellano-Bond estimator greatly overstate the speed of convergence under a wide variety of

assumptions concerning the type and extent of measurement error, while between understates

it somewhat. Finally, fixed effects and Arellano-Bond bias towards zero the slope estimates on

the human and physical capital accumulation variables.
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1 Introduction

In the last decade, spurred by the early work of Baumol [1986] and Barro [1991], growth regressions

have become an industry. There exists no good alternative for addressing the fundamental question

of what accounts for vast observed differences in per capita income across countries. Detailed case

studies, while they help identify hypotheses for further testing and theorizing, lack the generality

of large sample studies. On the other hand, the detractors of growth regressions have stressed

their numerous drawbacks. These include an often excessive distance between measured variables

and the theoretical concepts they are meant to capture; poor grounding of estimated functional

forms in economic theory, and in particular the prevalence of reduced form relationships from which

structural parameters cannot be identified; unjustified claims of causality in explanations of growth;

a small number of available observations; and the prevalence of prior-driven data-mining. These

are but a few in a growing list, resulting in numerous methodological debates on the proper way

to run growth regressions. Many of these debates are as yet unresolved, so research evaluating

the effectiveness of current methodologies and suggesting improvements to cross-country growth

empirics appears necessary.

This paper is such a study. We use simulation methods to evaluate the bias properties of several

estimators commonly used in the empirical growth literature.

The main contribution of our approach is to consider explicitly the impact of measurement

error on estimates of the determinants of growth. Measurement error is likely to be a central

problem in cross-country growth empirics. Nonetheless, this issue has received little attention in

the literature.1 In the absence of measurement error and other sources of endogeneity, a fixed-

effects estimator unambiguously dominates estimators that use any between-country variation,

when omitted variables such as the initial level of technology are correlated with included right-hand

side variables. In the presence of measurement error, however, fixed-effects estimators will tend to

exacerbate measurement error bias when the right-hand side variables are more time persistent than

the errors in measurement. The issue then is whether the gains from reducing omitted variables

bias are offset by an increase in measurement error bias under fixed-effects. We lack any guidance

1A notable exception is Barro [1997], chapter 1, page 36, who briefly discusses the possible consequences of

measurement error for fixed-effects estimates of the rate of convergence. Consistent with our simulation results, he

argues that these estimates of the speed of convergence are likely to be too high. See Griliches and Hausman [1986]

for a related point, though not in the specific context of growth regressions.
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from econometric theory to evaluate the resulting net bias in the multivariate context of growth

regressions, making Monte Carlo simulations necessary to address this issue.

A related contribution of this paper is to help resolve a long-running methodological debate in

growth empirics: whether the appropriate way to control for time invariant cross-country hetero-

geneity in the level of technology is to use a fixed-effects estimator, thereby identifying parameters

solely on the basis of within-country variation, or to retain at least some between-country variation

in the data and directly include as right-hand side variables available proxies explaining techno-

logical differences.2 Advancing this debate has profound implications for our understanding of the

growth process. Results obtained using fixed-effects differ markedly in two main ways from those

obtained by attempting to include additional correlates of growth.

First, fixed-effects lead to estimates of the speed of conditional convergence that are much higher

than the conventional 2% obtained in cross sectional studies.3 For a given history of income shocks,

a fast speed of convergence indicates that most countries at any point in time are relatively close

to their steady-states, so that incomes can only rise by improving the determinants of steady-state

income. In contrast, a slow speed of convergence suggests there is still a lot of catching up to do, so

that the force of neoclassical convergence alone can be expected to raise per capita incomes of less

developed countries over time. Second, the fixed-effects estimator tends to reduce the magnitudes of

the estimated coefficients on right-hand variables compared to cross-sectional alternatives, so that

it becomes harder to obtain statistically significant estimates on the determinants of steady-state

income: given improvements in steady-state determinants will yield smaller steady-state income

gains.4

To evaluate methodologies for growth empirics, we start with the Solow [1956] growth model,

2The first approach is associated with the work of Knight, Loayza and Villanueva [1993], Islam [1995] and Caselli,

Esquivel and Lefort [1996] among others. Since the mid-1990s, the use of dynamic panel data estimators in growth

empirics has become prevalent. The second approach can be likened to a "kitchen-sink" method, in which the unac-

counted variation in economic growth was attributed to additionnal right-hand side variables, to capture institutions,

policies and economic structures. See Wacziarg [2002] for a broad discussion of fixed-effects versus the kitchen-sink

approach.

3Barro and Sala-i-Martin [1995], chapters 11 and 12.

4For example, human capital variables that are highly significant in cross-sectional estimates become insignificantly

different from zero in panel-fixed effects applications, and sometimes reverse signs. See Islam [1995] and Benhabib

and Spiegel [1994].
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in its human capital-augmented version proposed by Mankiw, Romer and Weil [1992].5 The Solow

model is arguably the only solid theoretical foundation for the specific functional form generally

estimated by practitioners, which involves regressing growth rates on the log initial income and

a set of steady-state income determinants. Common specifications of growth regressions can be

directly derived from this model, and reasonable values for the exogenous parameters of the model

can be postulated. Using such values and modelling explicitly the dynamic nature of the Solow

growth specification, we generate simulated data with moments resembling those of the empirical

data, and perform Monte Carlo simulations to evaluate the performance of several commonly used

estimators: fixed-effects, random effects, between (OLS on country means), and the Arellano-Bond

estimator first introduced to growth empirics by Caselli, Esquivel and Lefort [1996].6

Our results suggest that using a least-squares estimator applied to a single cross-section of

variables averaged over time (the between estimator) performs best to estimate the speed of con-

ditional income convergence, though it tends to underestimate it. The fixed-effects estimator, as

well as the Arellano-Bond estimator, greatly overstate the speed of convergence under a variety of

assumptions concerning the type and extent of measurement error. The random effects estimator

also tends to overstate the speed of convergence, though much less drastically than fixed-effects.

Finally, fixed-effects seriously biases toward zero the slope estimates on the determinants of the

steady-state level of income (the accumulation and depreciation variables of the Solow model), in

particular on the human capital accumulation rate. In contrast, random effects and between tend

to overstate them (bias them away from zero).

Thus, our simulations are able to replicate the basic pattern of coefficients found in the literature

using alternative estimators applied to real data, and suggest measurement error has a lot to do

5A recently proposed alternative to growth regressions has been "levels" regressions, aimed at accounting for

variation in the level of income rather than in the growth rate of income. Salient examples include, in chronological

order, Hall and Jones [1999], Frankel and Romer [1999] and Acemoglu, Johnson and Robinson [2001]. Arguably,

these level specifications are more devoid of theoretical foundations than their growth counterparts, which in most

cases can be traced back to some version of the neoclassical growth model. Because this lack of theoretical foundation

makes simulation difficult for levels regressions, we focus on growth regression in this paper. These also remain vastly

more prevalent in the literature on the determinants of economic development.

6 In Section 4, we also evaluate the properties of three other estimators: 1) The Seemingly Unrelated Regression

(SUR) estimator used for example in Barro and Sala-i-Martin [1995]. 2) The specific cross-sectional estimator used

in Mankiw, Romer and Weil [1992], a variant of the between estimator. 3) The recently developed dynamic panel

"system" estimator of Arellano and Bover (1995) and Blundell and Bond (1998).
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with these differences. The punchline of our results is that the use of dynamic panel data methods

leads to unreliable estimates when measurement error is present: it leads to misleading inferences

on the speed of convergence, and to findings that common determinants of the steady-state income

level are insignificantly different from zero when this is not the case. In this particular application,

old-fashioned OLS on cross-sectional averages performs best.

Perhaps the main contribution of this paper is methodological, and carries broader implications:

the type of Monte Carlo exercise we present here should be a systematic rite of passage for studies

presenting new estimation methodologies in any field of empirical economics. Estimators that may

seem attractive to address a specific econometric problem need to be evaluated in a setting where

several sources of bias may coexist. When a potential for omitted variables bias coexists with

measurement error, a cure for the first problem can be worse than the disease, as it may exacerbate

the second.

This paper is structured as follows: Section 2 briefly discusses theoretical considerations related

to the methodology of growth regressions. Section 3 presents our basic simulation methodology

and results, contrasting OLS, fixed-effects, random effects and Arellano-Bond GMM estimators.

Section 4 discusses extensions of our simulations to country-specific measurement error, regressor-

specific measurement error, autocorrelated measurement error and additional estimators. Section

5 concludes by presenting new estimates of the speed of income convergence and of the effect of

steady-state determinants using real data, and discusses them in light of our simulation results.

2 Theoretical Framework

2.1 Growth Regressions and the Solow Model

Mankiw, Romer and Weil [1992, henceforth MRW] and Islam [1995] have shown that the Solow

growth model can be transformed in a way that allows its estimation through a simple application

of linear regression techniques. This section reviews this well-known derivation.

The Solow growth model augmented to include human capital accumulation starts with a simple

neoclassical production function:

Y (t) = K(t)αH(t)β(A(t)L(t))1−α−β (1)

where Y is output, K is physical capital, H is human capital, L is labor and A is a labor-augmenting

technology parameter. L and A are assumed to grow at exogenously determined rates n and g such
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that L(t) = L(0)ent and A(t) = A(0)egt. MRW and Islam also assume that n and g do not vary

between countries.

Assume that in a given period a constant fraction of output is saved and devoted to investment

in physical and human capital. If we define ŷ = Y/AL, k = K/AL and h = H/AL to be the units

per effective unit of labor, changes in physical and human capital can be represented as:

k̇(t) = skŷ(t)− (n+ g + δ)k(t) (2)

ḣ(t) = shŷ(t)− (n+ g + δ)h(t) (3)

where sh and sk are the proportions of output devoted to investment in human and physical

capital, respectively, and δ is the depreciation rate of both human and physical capital (which is

also assumed in the literature not to vary between countries).

The dynamics in equations (2) and (3) imply that the economy converges to steady-state levels

of physical and human capital k∗ and h∗, derived by setting k̇ = 0 and ḣ = 0. Substituting these

values back into equation (1) and taking logs, we get:

log y(t) ≡ log
Y (t)

L(t)
= logA(0) + gt− α+ β

1− α− β
log(n+ g + δ)

+
α

1− α− β
log sk +

β

1− α− β
log sh (4)

Equation (4) describes an economy in its steady-state. If one is willing to assume that countries are

at their steady-states, this equation can be turned into an econometric specification for a "levels"

regression - but the assumption is unlikely to hold.7

To derive a growth regression explicitly, we can approximate the model around the steady-state

y∗:
d log ŷ(t)

dt
= λ [log ŷ∗ − log ŷ(t)] (5)

where λ = (n+ g + δ) (1− α− β) is the rate of convergence. That is, λ is the percentage of the

gap between a country’s steady-state and its current income that will be closed in one period, in

the absence of any other shocks.8 A convergence rate of λ would imply that, given two points in

time t1 and t2, we can measure end-of-period output as:

log ŷ (t2) =
³
1− e−λτ

´
log ŷ∗ + e−λτ log ŷ (t1) (6)

7However, for a recent paper taking such an assumption seriously, see Bernanke and Gürkaynak [2001]. For a

critique, see Caselli [2001].

8For example, if λ = 0.10, the half-life of convergence to the steady state is log(2)/0.10 = 0.69/10 = 6.9 years.
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where τ = t2 − t1. The higher the convergence rate, the closer we should expect the economy to

be to its steady-state at a given point in time, all else equal.

Since log ŷ (t) = log y(t)− logA(0)− gt, we can substitute equation (4) into log ŷ∗ in equation

(6):

log y (t2) =
³
1− e−λτ

´ α

1− α− β
log sk +

³
1− e−λτ

´ β

1− α− β
log sh

−
³
1− e−λτ

´ α+ β

1− α− β
log (n+ g + δ)

+e−λτ log y (t1) +
³
1− e−λτ

´
logA(0) + g(t2 − e−λτ t1) (7)

This equation is the basis for estimating growth regressions in discrete time, as derived from a

continuous time Solow growth model. Adding an error term νit with mean zero conditional on all

the right-hand side variables, capturing inherent randomness in log yit, we can rewrite equation (7)

as a fixed-effects panel data regression of the form:

log yit = γ0 + γ1 log sk,it−τ + γ2 log sh,it−τ + γ3 log (n+ g + δ)it−τ

+γ4 log yit−τ + µi + ηt + νit (8)

where t denotes the end of a time period of duration τ and t − τ denotes the beginning of that

period.9 The reduced form parameters and error terms are defined as:

γ1 =
¡
1− e−λτ

¢
α

1−α−β
γ2 =

¡
1− e−λτ

¢ β
1−α−β

γ3 = −
¡
1− e−λτ

¢ α+β
1−α−β

γ4 = e−λτ

γ0 + µi =
¡
1− e−λτ

¢
logAi(0) (an intercept plus a country effect)

ηt = g(t− e−λτ (t− τ)) (a time specific effect)

νit (a zero-mean error term, orthogonal to the regressors)

Equation (8) is the functional form used as the data-generating process for the remainder of this

paper. In what follows we will sometimes find it useful to rewrite equation (8) as:

log yit = γ0xit + µi + ηt + νit (9)

9 In our actual empirical application of equation (8) the determinants of the steady-state level of income log sk,

log sh, and log (n+ g + δ) are entered as averages over the period t − τ to t, rather than their beginning of period

values. This is consistent with the common practice of growth regressions, as in MRW and Islam, where introducing

right-hand side variables as period averages is thought to limit the extent of classical measurement error. Note that

theory gives us no guidance on this choice, as it considers these regressors to be exogenous and time invariant.
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where we define x0it = [1, log sk,it−τ , log sh,it−τ , log (n+ g + δ)it−τ , log yit−τ ] and γ
0 = [γ0, γ1, γ2, γ3, γ4],

with the dimension of these vectors denoted Q = 5.

2.2 Country-level heterogeneity

The A(0) term constitutes a stumbling block for growth regressions. This term captures the initial

level of technology, which can be proxied for using variables such as resource endowments, climate,

institutions, government type, and so on. These variables vary widely across countries, so that

we can index A(0) by i. Hence, we define γ0 + µi ≡
¡
1− e−λτ

¢
logAi(0), where γ0 is a constant

capturing the average level of the initial technology term across countries and µi is a zero-mean

country-specific effect. There have been three basic ways of dealing with country-level heterogeneity

(i.e. the µi =
¡
1− e−λτ

¢
logAi(0) − γ0 term) to estimate growth regressions. These methods are

associated with the contributions of MRW [1992], Islam [1995] and Caselli, Esquivel and Lefort

[1996], respectively.

MRW [1992] and Islam [1995] MRW assumed the µi term had mean zero conditional on

other right-hand side variables. As a result, they ran simple OLS regressions of growth on the log

of initial income and time-averaged steady-state determinants (i.e. a single cross-section), including

an intercept in the regression to account for γ0. A major drawback of this approach is that it causes

the estimated coefficients to be biased if the orthogonality assumption is untrue - which is likely

the case in practice.

Assume that we want to estimate the parameters of the panel data regression model of equation

(9):

log yit = γ0xit + µi + εit (10)

where µi is not assumed to be independent from xit and εit = ηt+vit is a well-behaved random-noise

term.

Define X as the NT × Q matrix that stacks xit over time periods t = 1...T and countries

i = 1...N , and µ as the NT × 1 vector that similarly stacks µi. Let Σxx be the Q ×Q covariance

matrix of columns of X, and Σµx the Q ×1 vector of the covariances of µ with the columns of X.
If a pooled OLS (POLS) regression is run on the stacked data, standard omitted variables bias will
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result:10

plim γ̂POLS = γ +Σ−1xxΣµx (11)

Equation (11) implies that slope estimates will be biased if the country-specific effects are

correlated with the regressors. In our particular application, the Solow model states that the

omitted term captures some positive multiple of the initial level of technology logAi(0). The

observed data in X are initial income, rates of human and physical capital accumulation and

population growth. While the Solow model strictly speaking is silent about the correlation between

the logAi(0) term and the right-hand side variables, there is a strong presumption that these four

variables will be potentially highly correlated with logAi(0). Hence, estimated coefficients could

be significantly biased when the correlation between logAi(0) and the steady-state determinants is

ignored.

This is the point originally made by Islam [1995] in advocating the use of fixed-effects estimation

instead of OLS on country means. Islam averaged annual data from the available sample of countries

across time, into 5-year periods. µi is a time-invariant effect if λ is treated as a constant and τ does

not vary with time (i.e. the panel involves equally spaced periods). Hence, it can be represented as

a country-fixed effect in a panel regression, while the term g(t− e−λτ (t− τ)) is a time effect. Using

a fixed-effects estimator, Islam found the estimated rate of convergence to be much higher than

had been estimated by MRW, and the effect of some right-hand side variables smaller (particularly

human capital).

Caselli, Esquivel and Lefort [1996]. Going one step further, Caselli, Esquivel and Lefort

[1996, henceforth CEL] pointed out the necessary correlation between the country-specific effect µi

and the log of initial income resulting from the dynamic nature of the specification. We can rewrite

equation (9) as:

log yit = γ0 + γ0swit + γ4 log yit−τ + µi + ηt + vit (12)

where γ0s = [γ1, γ2, γ3] and wit =
£
log sk,it−τ , log sh,it−τ , log (n+ g + δ)it−τ

¤
. Lagging equation (12)

by one period, it is evident that log yit−τ contains µi. Thus, log yit−τ must be correlated with the

error term unless µi is appropriately accounted for.

10This bias is also known as heterogeneity bias. We will use the terms heterogeneity bias and omitted variables

bias interchangeably.
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CEL transformed all variables used in the regressions into deviations from period means (thereby

removing the need for a time-specific intercept ηt) and then eliminated the country-specific effects

µi by taking first-differences. Their transformed regression is:

glog yi,t − glog yi,t−τ = γ0s ( ewi,t − ewi,t−τ )

+γ4

³glog yi,t−τ − glog yi,t−2τ´+ (eνi,t − eνi,t−τ ) (13)

where "˜" denotes deviations of variables from period means. The problem with this specification is

that, while µi and ηt have been differenced away, the term glog yi,t−τ is clearly not independent fromeνi,t−τ .11 Hence, some sort of instrumental variables approach is required. CEL proposed a GMM
estimator similar to the Arellano and Bond [1991] estimator (henceforth, AB) to deal with the

problems of heterogeneity bias and endogeneity of the differenced lagged income term in equation

(13).12 Their estimator results in a consistent estimator for the unknown parameters under the

moment condition E [eνi,teνi,t−τ ] = 0. They instrument for the differenced independent variables

using all predetermined independent variables (in levels). For example, their panel consists of four

time-periods, and their variables
³glog yi,1 − glog yi,0´ and ( ewi,1 − ewi,0) for period 1 are instrumented

using yi,0 and wi,0. Then,
³glog yi,2 − glog yi,1´ and ( ewi,2 − ewi,1) are instrumented using yi,0, yi,1,

wi,0 and wi,1 and so on. The exclusion of the current period ewi,t term from the list of instruments

is meant to deal with the possible endogeneity of the variables in wit, a valid procedure under the

assumption that all of the instrumental variables are predetermined.13 Consistent estimates will

result even in the presence of measurement error on the right-hand side variables, as long as the

instruments are not correlated with the errors in measurement, for example if these are white noise

(as in the classical case).

Estimators in the class of the AB estimator may have an advantage since they address several

problems with the cross-sectional approach to growth regressions. However, they require losing at

least two periods of data in order to implement the IV procedure, which could affect estimates in

an unknown direction when T is small. Another recently identified drawback of AB is the problem

11We will refer to this source of bias as endogeneity bias, to differentiate it from heterogeneity bias.

12Estimators in this class have been widely used in the empirical growth literature. See for instance Easterly,

Loayza and Montiel [1997], among many others.

13The Solow model, however, treats the wit variables as exogenous, so the endogeneity of wit should not be a

problem within the strict confines of the model. Moreover, whether these variables are in fact predetermined is

subject to debate.
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of weak instruments, arising in small samples: the first stage relationship between differenced

independent variables and lagged level variables may be weak, biasing GMM estimates towards

their fixed-effects counterparts. This is likely to be a problem especially when the convergence

parameter γ4 is large and when the variance of the country-specific effect µi is large relative to

the variance of log yit. There is now a sizable literature on weak instruments. For example, Stock,

Wright and Yogo [2002] show that in a two-stage least squares (2SLS) context, if the instruments

in the first stage do not help at all in predicting the endogenous regressors, 2SLS reduces exactly

to OLS.14 Staiger and Stock [1997] provide a rule of thumb for determining whether instruments

are weak in the linear IV case with one endogenous regressor: if the first stage F-test for the joint

significance of the instruments is smaller than 10, then the instruments are declared to be weak. For

the case of multiple endogenous regressors, Stock and Yogo [2003] propose using the Cragg-Donald

[1993] test statistic for underidentification, but using appropriately corrected critical values in order

to use the statistic for a test of the null hypothesis of weak instruments.

We apply this test in Section 3 in order to assess whether the AB estimates of the Solow model

are likely to be subject to the weak instruments problem, finding that they are.15 In section 4,

we also examine the properties of the AB estimator when N is increased beyond the number of

countries usually available in growth regressions, and we simulate the behavior of more recently

developed estimators from Arellano and Bover [1995] and Blundell and Bond [1998], developed

specifically to address the small sample drawbacks of the AB estimator.

The three estimators discussed here have their own strengths and weaknesses. However, the

previous literature has given little attention to what happens in the presence of measurement error.

14Stock, Wright and Yogo [2002] define the concentration parameter µ2 as a measure of goodness of fit of the first

stage regression, or equivalently a measure of the strength of the instruments. They state that: "When µ2 = 0 (...),

the instruments are not just weak, but irrelevant. In this case, the mean of the 2SLS estimator is the probability

limit of the ordinary least squares (OLS) estimator, plim(β̂
OLS

). (...) When the instruments are relevant but weak,

the 2SLS estimator is biased toward plim(β̂
OLS

)." (p. 519).

15To evaluate the extent of small sample bias in dynamic panel estimators used to estimate growth regressions,

Islam [2000] conducted a Monte Carlo study. He concluded that panel-IV estimators such as the AB estimator suffer

from serious small sample/weak instruments problem, and that the fixed-effects (least-squares dummy variables) and

the minimum distance estimators had the best small sample performance. He did not, however, consider the issue of

measurement error like we do. As we argue below, measurement error is a first order problem, greatly exacerbating

small sample bias in estimators of the AB class.
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2.3 Measurement Error and Heterogeneity Bias

2.3.1 Measurement error without heterogeneity bias

In this subsection, we examine what happens once we allow for measurement error in the indepen-

dent variables. In order to deal with various sources of bias one by one, we ignore for the moment

the omitted variables and endogeneity problems identified above, and will return to them later. In

other words, we assume log yit = γ0xit + εit and E (εit|xit) = 0 where εit = ηt + vit. In a univariate

setting, when measurement error is white noise, pooled OLS estimates exhibit attenuation bias.

However, in the more general multivariate case, it is impossible to sign the effect of measurement

error on the slope estimates.

Klepper and Leamer [1984] point out that in the presence of classical measurement error in a

multivariate context, few substantive restrictions can be placed on the sign and magnitude of the

resulting bias unless stringent assumptions are made. In our notation, they consider a regression

model where a dependent variable, log yit, is drawn from a normal distribution with mean γ0xit

(where xit is a Q ×1 column vector) and variance σ2ε conditional on xit. Thus:

log yit = γ0xit + εit (14)

with E [εit|xit] = 0. They assume that xit cannot be observed, but that we can observe x∗it = xit+dit,

where E [dit|xit] = 0.16 Define:

var [dit|xit] = D = diag
n
σ2d0 , σ

2
d1 , ..., σ

2
dQ−1

o
(15)

In our application, we will set σ2d0 = 0, i.e. we do not shock the intercept column in X. Defining

x̄ ≡ E(xit), (log yit, x∗0it) has a multivariate normal distribution with moments:

E
¡
log yit, x

∗0
it

¢
= (γ0x̄, x̄) (16)

V
¡
log yit, x

∗0
it

¢
=

 σ2ε + γ0Σxxγ γ0Σxx

Σxxγ Σxx +D

 (17)

16 In our simulations, we consider alternative specifications for the form of measurement error. Also, in this section

we are abstracting from measurement error in the dependent variable log yit. Obviously, in the classical measurement

error case, this would be equivalent to raising the variance of the error term νit, reducing the efficiency of the estimates

without introducing bias. In our simulations, we will need to consider measurement error in log yit explicitly because

of the dynamic nature of the Solow specification. We are ignoring this dynamic characteristic for now.
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Performing a pooled OLS regression of log yit on x∗it, we can show:

plim
¡
γ̂POLS

¢
= (Σxx +D)−1Σxxγ (18)

where X∗ stacks the x∗0it vectors over time and countries and y does the same for log yit. Obviously,

if D = 0, pooled OLS produces a consistent estimator. In the generic case, however, the estimator

is inconsistent. We cannot say anything more about the sign and magnitude of the bias unless

we can make assumptions about the correlation structure among the various independent variables

and the covariance matrix of measurement error, i.e. if we can place restrictions on (Σxx +D) and

Σxx, based on some knowledge of the nature of measurement error. This is in general a tall order.

2.3.2 Measurement error with heterogeneity bias

Assume now that E (log yit|xit) = γ0xit+µi where µi is unobserved and not necessarily orthogonal

to the variables in xit.17 Thus, the true model is log yit = γ0xit + µi + εit, where all the variables

are still defined as above. In this case, estimating the model using OLS will involve two separate

problems: 1) An omitted variables bias problem due to µi being potentially correlated with the

right hand side variables in xit. 2) A measurement error problem due to xit being imperfectly

observed. As argued above, it is already difficult to make statements about the sign and magnitude

of the bias when only measurement error is present. Such statements become even more difficult

when correlated country effects are also considered. To illustrate this formally, we can derive the

probability limit of the pooled OLS estimator in the presence of both measurement error and

heterogeneity bias.

The unconditional expectations of log yit, x∗it and µi are:

E (log yit, x
∗
it, µi) =

¡
x̄0γ + µ̄, x̄, µ̄

¢
(19)

where µ̄ = E(µi) and x̄ = E(xit) = E(x∗it), and the variance of µi is denoted σ2µ. Then:

V (log yit, x
∗
it, µi) =


σ2ε + γ0Σxxγ + 2γ0Σµx + σ2µ γ0Σxx +Σ0µx γ0Σµx + σ2µ

Σxxγ +Σµx Σxx +D Σµx

γ0Σµx + σ2µ Σ0µx σ2µ

 (20)

17 In the rest of this section we continue to ignore the problem arising from using a fixed-effects estimator in the

presence of a lagged dependent variable in xit - i.e. the problem identified in the discussion following equation (13).

We will take this issue into account in our simulations, which explictly model the dynamic nature of the empirical

Solow model.
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Suppose that we estimate γ using pooled OLS, with x∗it as our observed regressor. Then the limiting

value of the pooled OLS estimator for γ is:

plim γ̂POLS = (Σxx +D)−1Σxxγ + (Σxx +D)−1Σµx (21)

Obviously, this estimator is inconsistent for two reasons: the first is measurement error bias, and

the second is heterogeneity bias. If D = 0, we would recover equation (11), showing that pooled

OLS would not involve measurement error bias. On the other hand, if Σµx = 0, we would recover

equation (18), showing that pooled OLS regression would not involve any heterogeneity bias. If

neither of these two issues were a problem, pooled OLS would be a consistent estimator for γ.

In a context where both problems coexist, there may be a trade-off between reducing the extent

of bias due to measurement error and reducing the bias attributable to heterogeneity. The common

way to deal with heterogeneity, as explained above, is to estimate γ using the fixed-effects (FE)

estimator γ̂FE. Appendix 1 derives the limiting value of γ̂FE in the presence of measurement

error, showing that it gets rid entirely of heterogeneity bias. It also derives the limiting value of

the between (BE) estimator γ̂BEobtained by computing country means of the data over time and

running OLS regressions on these country means:18

plim γ̂BE =

µ
ΣBxx +

1

T
D

¶−1
ΣBxxγ +

µ
ΣBxx +

1

T
D

¶−1
Σµx (22)

plim γ̂FE =

µ
ΣWxx +

T − 1
T

D

¶−1
ΣWxxγ (23)

where ΣBxx denotes the between-country variation in X, ΣWxx denotes the within-country variation

(as defined in the Appendix 1), and Σxx = ΣWxx +Σ
B
xx.

It is difficult to make general statements about what happens to bias from measurement error

under FE and BE estimation in the multivariate case. Measurement error bias on specific slope

coefficients under FE may or may not be exacerbated. This is the main justification for a Monte

Carlo approach to evaluating the properties of these estimators.19 However, a few statements can

18Appendix 1 also derives the plim of the random effects (RE) estimator γ̂RE , which is a matrix-weighted average

of the BE and FE estimators.

19 In subsection 2.3.3 below, and in the appendix, we discuss conditions under which measurement error is exac-

erbated under FE in the specific case of univariate regression. We argue these conditions are likely to hold in our

particular application, as in most. But only a Monte Carlo simulation can provide definitive answers.
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be made to compare the properties of pooled OLS, BE and FE estimators using equations (21),

(22) and (23):

1). As noted above, FE gets rid entirely of the heterogeneity bias while there is in general both

measurement error and heterogeneity bias when using the BE and pooled OLS estimators.

2). The BE estimator tends to reduce the extent of measurement error bias compared to the

other estimators due to averaging the imperfectly measured variables over time, which reduces

the variance of the measurement error relative to the true signal. Moreover, the greater is T , the

smaller the bias from measurement error.

3). Both pooled OLS and BE will involve smaller heterogeneity bias, the greater the extent of

measurement error. In other words, there is an interaction between these two sources of bias. This

is because all other things equal, measurement error reduces the correlation between the regressors

and the country effects, and hence alleviates the omitted variables problem. For this reason, BE

will on average involve larger heterogeneity bias compared to pooled OLS, holding constant D.

4) Comparing FE and BE, if ΣWxx relative to
T−1
T D is "smaller" in a matrix sense than ΣBxx is

relative to 1
TD, then the bias arising from measurement error will tend to be smaller under BE

compared to FE. This is likely to hold if the within variation is small compared to the between

variation (most of the variation in the panel arises from the cross-section rather than the time

dimension - which is the case in growth applications), or if T is large.

To conclude, despite these general lessons, we can say little about the net biases to individual

parameter estimates as they would result from each estimation method. Given the multivariate

nature of growth regressions, only simulations can determine which estimator dominates in terms

of bias under alternative assumptions about the covariance structure of the true data Σxx, the

covariances between the true variables and the country-specific effects Σµx and the covariance

matrix of the measurement error D.

2.3.3 Autocorrelated Measurement Error: Univariate Example

Appendix 2 analyzes in detail a simple case illustrating the trade-offs identified above in a case

where net biases can be signed: the case of Q = 2 (a single regressor xit plus an intercept). This

example is also useful to illustrate what happens when measurement error is autocorrelated.

The example shows clearly that, under FE estimation, eliminating heterogeneity bias may come

at the cost of exacerbating measurement error bias. The greater the time persistence in xit, the
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greater the extent to which measurement error bias is exacerbated, as the variance of the true signal

gets differenced away relative to the variance of the error in measurement. In the context of growth

regressions, where right-hand side variables are highly time persistent, this point is particularly

central. We cannot say analytically whether this increase in measurement error bias is worth the

elimination of heterogeneity bias unless we know the moments of the true underlying data and of

the measurement error.

As argued in Section 2.2, a GMM procedure such as AB could in principle deal with both

sources of bias if measurement error is white noise, since measurement error in the instruments

is uncorrelated with measurement error in the regressors. However, introducing measurement

error weakens the first stage relationship between predetermined regressors and the instruments,

potentially making the weak instruments problem worse. Moreover, the validity of this procedure

relies heavily on the assumption of non-autocorrelated errors in measurement.

Appendix 2 shows that when measurement error is autocorrelated, where we define ρd =

corr(dit, dit−τ ), FE exacerbates measurement error bias compared to pooled OLS whenever ρd < ρx,

where ρx is the autocorrelation coefficient in xit. In this case, instrumenting for differenced xit using

its lagged levels values (as in the AB procedure) no longer gets rid of measurement error bias. In

words, as long as ρd > 0, we cannot produce a consistent estimator of the desired parameters using

the AB estimator. We consider the case of autocorrelated measurement error in Section 4.

2.4 Summary

Five factors can cause inconsistent estimates of γ in panel growth regressions. The first is an

omitted-variables bias resulting from the possible correlation between country-specific effects and

the regressors, affecting the consistency of pooled OLS, BE and RE estimates. The second is the

endogeneity problem specific to dynamic panels, identified after equation (13), which will make

FE and RE estimates inconsistent.20 The third is classical measurement error on the independent

variables, which affects the consistency of pooled OLS, BE, RE and FE estimator, though the

bias tends to be exacerbated in the latter case and partly averaged away under BE. The fourth

is possible autocorrelation in measurement errors, which results in inconsistency for all estimators

we consider here including the AB estimator. The fifth is the weak instruments problem that can

20For the sake of space and because this source of bias is well-known, we have abstracted from it in the last

subsection, but we will take it into account explicitly in our simulations.
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cause bias in the AB estimator in small samples.

Each of the estimators under consideration involves a trade-off: pooled OLS suffers from het-

erogeneity bias but limits the incidence of measurement error bias relative to FE; the BE estimator

reduces measurement error through time averaging of the regressors, but does not deal with hetero-

geneity bias; FE addresses the problem of heterogeneity bias, but tends to exacerbate the problem

of measurement error. The AB estimator is inconsistent when instruments are weak or when mea-

surement error is autocorrelated. As a result, we cannot say a priori which estimator produces the

smaller total bias. Simulations are necessary to evaluate the properties of these estimators.

3 Monte Carlo Simulations

3.1 Simulation Methodology

Since it is impossible to derive analytical results about the extent and sign of omitted variables and

measurement error biases in a multivariate context, we use Monte Carlo simulations to evaluate

the bias properties of of FE, BE, RE and AB estimators.21

The starting point for our simulations is equation (8). The data-generating process for the true

data (the data not measured with error) is:

log yit =
³
1− e−λτ

´ α

1− α− β
log sk,it−τ +

³
1− e−λτ

´ β

1− α− β
log sh,it−τ

−
³
1− e−λt

´ α+ β

1− α− β
log (n+ g + δ)it−τ + e−λt log yit−τ

+
³
1− e−λτ

´
logAi(0) + g(t− e−λτ (t− τ)) + νit (24)

3.1.1 Simulated Data

Underlying data. We define a period by a five year interval of time (τ = 5). Our underlying

data spans 40 years, from 1960 to 2000, and our 8 five year periods are defined as 1960-1965,

1965-1970, ..., 1995-2000. In equation (24), the variables log sk,it−τ , log sh,it−τ , log(n+ g + δ)i,t−τ

and log yit−τ are simulated data with moments resembling those of the corresponding observed

variables. To obtain these moments, we captured log sk using the log of investment rates as a

share of real GDP from the Penn World Tables, version 6.1 [Heston, Summers and Aten, 2002 -

21Results for pooled OLS estimates are available upon request. The pooled OLS estimator is rarely used in cross-

sectional growth regressions since it is less efficient than random effects.
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henceforth, PWT6.1]. log sh is the log of the secondary school gross enrollment ratio from Barro

and Lee [2000] and n is the rate of population growth calculated from the PWT6.1 population

series. In calculating log(n+ g+ δ), we postulated (as above) that g+ δ = 0.07. Finally, log yit−τ is

the log of per capita income in purchasing power parity from PWT6.1, measured at the beginning

of the first time period (1960).22

We averaged the variables over relevant time periods and arrayed them in a N× (T (Q− 1) + 1)
matrix. Specifying each variable at separate time periods instead of stacking them over time allows

us to simulate explicitly their time persistence characteristics. Finally, since our underlying data

was available in all periods for 69 countries, and we are seeking a balanced panel, we set N = 69.

We assumed these variables are measured without error. In other words, we take their resulting

first and second moments to be those of the "true" variables, which we will later shock by adding

a white noise measurement error. As the observed data surely incorporates measurement error, we

will be understating the magnitude of the covariances among the underlying "true" variables and

overstating their variances.

Simulating the fixed effects term µi. One difficulty we face is simulating the country fixed

effects µi =
¡
1− e−λτ

¢
logAi(0) − γ0.

23 Theory provides no guidance as to the values of Ai(0)

for different countries, since it is taken as exogenous. The problem is important because the

covariance structure linking the country-specific effects to the observed regressors determines how

much heterogeneity bias will be present. To obtain simulated fixed effects and their corresponding

covariance structure with the right-hand side variables, we used our observed panel data set to

run an FE regression on the specification in equation (24). We computed the fitted fixed effects

from this regression. We then used this series and treated it as an additional variable, as if it were

observed, to generate the moments of the simulated data.

Obviously, given that the underlying data must incorporate measurement error, this procedure

will lead to biased estimates of the country-specific effects, as discussed in Section 2. If this is

22Since the model is dynamic, subsequent values of the initial income term log yit−τ will be generated by iterating

on income using the Solow specification, starting from a drawn value for the first period. As explained below, we

calibrate the parameters so that subsequent generated values of the income variables bear characteristics resembling

those of the corresponding real data.

23The time fixed effect g(t− e−λτ (t− τ)), which is identical for all countries at each date, was generated for each

period t simply by setting the parameters g and λ to their assumed values, and τ = 5.
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the case, the moments of µi and especially its covariance structure with the other right-hand side

variables will also be flawed. It is therefore critical that we also present results with alternative

assumptions about the covariance structure between the simulated fixed effects and the simulated

regressors in xit. We do so below.

Moments of the underlying data. Table 1, panel A presents the matrix of correlations among

our Q +1 variables of interest in the pooled data used to generate our simulated datasets. For

example, once stacked over time and countries, log sk,it bears a correlation of 0.60 with log sh,it.

The estimated country-specific effect bears high correlations with the right hand side variables,

suggesting a big scope for heterogeneity bias when using estimators that do not correct for it. For

instance, the correlation between initial income log yi,t−τ and µi is 0.93.
24 Panel B isolates the

between correlations among variables, by taking time means (x̄i, µ̄i) (where obviously µ̄i = µi)

and computing their correlation matrix. The between correlations are quite close to the pooled

data correlations, suggesting that cross-sectional variation dominates in our data. For example,

the between correlation between log sk,it and log sh,it is 0.72. Finally, Panel C displays the within

correlations, obtained by computing (xit − x̄i, µi − µ̄i). These correlations are always much lower

than either the pooled or between correlations, again suggesting that the cross-country variation

dominates in the pooled data. For example, the within correlation between log sk,it and log sh,it is

0.21.

Draws of simulated data. We are now in the presence of N observations for T (Q − 1) + 2
variables.25 We computed the (T (Q −1)+ 2)× 1 vector of means for these variables, denoted m̂x,µ

and their variance covariance matrix, denoted Ω̂x,µ. Stacking the data in this way (in wide format)

allows us to provide a realistic simulation of the relative weights of between and within variations -

by specifying explicitly the autocorrelation structure of the right-hand side variables in addition to

their cross-correlations. For each run of our simulation, we then drew N observations for the T (Q

−1) + 2 variables from a multivariate normal distribution with mean m̂x,µ and variance Ω̂x,µ.

24For the sake of illustration, in Table 1 we used every 5-year time-interval observation between 1960 and 1995 for

the real data on log yit−τ . In contrast, in our simulations, we are generating log yit−τ from the model, for all but

the first period - due to the dynamic nature of equation (24). The simulated data on log yit−τ and their observed

counterparts are very highly correlated (correlations are available upon request).

25 i.e. N observations per period for log sk,it−τ , log sh,it−τ , log(n+ g+ δ)i,t−τ , N observations for log yit−τ in 1960

and N observations on the time invariant country effects.
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The next part of the data generation procedure is to simulate the residuals νit. We opted to let

the variance of the residual differ across time periods, and the residuals covary across time periods.

To do this, we generated the fitted residuals from the fixed-effects regression using observed data

for each period, and arrayed them in a N ×T matrix. We computed their T ×T covariance matrix

Ω̂ν . Finally, we generated N sets of T normally distributed residuals with mean zero and covariance

matrix Ω̂ν . An interesting aspect of this exercise is that the variance of the fixed-effects estimated

residual term ν̂it was found to be a small fraction of the variance of log yit, on the order of 1%.

Using all the parameters and simulated data, we computed the simulated dependent variable

log yi,1965 for period 2, using equation (24) and the simulated data on log yi,1960. We used this

generated value of log yi,1965 to similarly generate log yi,1970, and so on iteratively until we obtained

log yi,2000.26 Formally, log income in period t for country i was simulated as:

log yit = γs

t−1X
j=0

γj4wi,t−j−1 + γt4 log yi0 + µi

t−1X
j=0

γj4 +
t−1X
j=0

γj4νit−j (25)

3.1.2 Parameter Values

There is no guarantee that the generated income data resembles in any way the underlying real

world data. Equation (25) shows that simulated income is a function of past values of the steady-

state determinants in wit, the log of income at the beginning of the first period log yi0, the fixed

effects µi and a weighted sum of the current and past residuals νit, as well as the model’s reduced

form parameters in γ. As t increases, the moments of the generated values of income might diverge

more and more from those observed in the true income data.

To address this issue we calibrated the model’s parameters α and β so that the generated income

variables in a typical draw of the data have moments resembling those of the observed variables.

We found that we did not need to diverge greatly from commonly assumed values of α and β to

obtain a good calibration: in a typical draw of the data, setting α = β = 0.27 delivers moments of

26There are several reasons for implementing a dynamic method for simulating income rather than treating log yit−τ

on the right hand side of equation (24) in the same way as we treat steady-state determinants. First, internal

consistency requires that income be modelled in conformity with the dynamics of the Solow model. Second, this

dynamic method will allow us to isolate and quantify the extent of the endogeneity bias arising under fixed effects, as

identified by CEL and discussed above in section 2.2. Third, this is computationally required for the implementation

of the AB estimator.
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generated income variables that look similar to those seen in the PWT6.1 data.27 These variables

are conventionally both set to 1/3 in the context of the Solow model (as discussed for instance in

Barro and Sala-i-Martin, 1995].

The other parameters of the structural model, g, δ and n are set to their conventional values as

in Barro and Sala-i-Martin [1995]:

g = 0.02; n = 0.01; δ = 0.05

These parameters imply a convergence parameter λ = (n+ g + δ) (1− α− β) = 3.68%, slightly

higher than the value of 2.67% implied by conventional values of α and β.28 With these assumed

structural parameters and τ = 5, the implied reduced form parameters are as follows:

γ1 ≈ 0.099; γ2 ≈ 0.099; γ3 ≈ −0.197; γ4 ≈ 0.832

Note that in empirical applications of the Solow growth model, a small contradiction exists between

the theoretically derived estimating equation and the linear specification actually estimated: insofar

as the rate of population growth n enters the equation as a variable (in the term log (n+ g + δ)),

then terms such as
¡
1− e−λt

¢
, where λ depends in part on n, should not be treated as constant.29

3.1.3 Measurement Error

The dataset generated above is free from measurement error. If we were to run fixed-effects regres-

sions of log yit on log sk,it−τ , log sh,it−τ , log(n + g + δ)i,t−τ and log yit−τ using repeated draws of

the simulated data, the only source of bias in the fixed-effects regression would be the endogeneity

problem that stems from the dynamic nature of the model.30 If we were to run between regressions

27Details of our calibration exercise, including a detailed comparison of the moments of the generated data with

those of the observed data, are available upon request.

28We have rerun our simulations assuming α = β = 1/3 and all the results were qualitatively unchanged. These

results are available upon request.

29However, doing so is an acceptable approximation since variation in n is likely to have a small impact on variation

in e−(1−α−β)(n+g+δ)τ . On the other hand, variation in n will have a larger impact on variation in log(n + g + δ),

which justifies not treating this variable as a constant. At any rate, we follow common practice in treating e−λτ as a

constant and log(n+ g + δ) as a variable.

30Additionally, if we simulated the income data without the error term νit, fixed effects would lead us to recover

exactly the reduced form theoretical parameters γ of the model. We did this to check our simulation program for

programming errors, and the corresponding results are available upon request.
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on simulated data, we would obtain estimated coefficients tainted only by heterogeneity bias, i.e.

the term
¡
ΣBx
¢−1
Σµx in equation (22), where D is set to 0.

To evaluate the merits of various estimators used to estimate growth regressions in the presence

of measurement error, we shocked our simulated variables by adding white-noise.31 This can be

done in several ways. In our baseline simulations, we simply added a normally distributed, zero

mean shock with variance equal to some fraction F < 1 of the variance of the underlying variable

(we will refer to F as the error-to-truth ratio). This was applied to simulated variables period-by

period. Formally, consider first the determinants of the steady-state level of income, log sk,it−τ ,

log sh,it−τ and log(n+ g + δ)i,t−τ . For independent variable xq in period t, we computed x∗q,it as:

x∗q,it = xq,it + dq,it (26)

with dq,it ∼ N
¡
0, F σ̂2qt

¢
for all i and q = 2...4, where σ̂2qt is the sample variance of xq,it in period t.

We proceeded in exactly the same way for the income variable log yit:

log y∗it = log yit + dy,it (27)

where dy,it ∼ N
¡
0, F σ̂2yt

¢
for all i, where σ̂2yt is the sample variance of log yit in period t.

In the specifications above, the variance of the measurement error can vary period-by-period

insofar as the variance of the underlying true data does. In other words, the T (Q− 1)× T (Q− 1)
variance covariance matrix of the errors-in-variables, Ω̂d, is diagonal, with the diagonal elements

allowed to differ across regressors and time. The fraction F , however, is common to all variables

in all periods. We relax some of these assumptions on measurement error in the robustness tests

presented in Section 4.

The parameter F is set to four values: 0%, 5%, 10%, and 15%.32 It is, of course, difficult to

know what the appropriate extent of measurement error is in reality. Hence, it is essential to vary

F to assess the robustness of our results. However, clues about whether our chosen range of values

for F is reasonable can be obtained. Notice first that all variables are entered in logs, so even a

value of F = 5% may imply rather large shocks, especially on the underlying income variable yit.

Our additive term dy,it translates into some multiplicative term edy,it applied to yit (income in 1996

PPP dollars).

31Obviously, we did not shock the fixed-effects µi nor the intercept.

32As an additional check, we also did our simulations with extreme values of F : 25% and 50%. The qualitative

properties of our results were unchanged, but the extent of bias quickly became unreasonably large.
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We can display draws of the mismeasured variables pooled across time periods and compute

the average absolute value deviation from their true (unshocked) values, as a summary measure

of the extent of measurement error. Table 2 displays these values as well as the pooled sample

averages of the underlying "true" (unshocked) variables, for comparison. To construct Table 2, we

drew simulated data for 2, 000 countries in the 8-period panel, i.e. 16, 000 observations.

Consider first measurement error on income yit. For F = 5%, the average absolute value of

measurement error was $1, 332, for F = 10% it was $2, 134 and for F = 15% it was $2, 703.

These are to be compared to the pooled sample mean of simulated income, which is $4, 997.33

The magnitudes we obtain on the other variables seem more moderate, due to the fact that their

values are between 0 and 1. Consider for instance the rate of physical capital accumulation sk: for

F = 5%, the average absolute value of measurement error was 2.03 percentage points, for F = 10%

it was 2.95 percentage points and for F = 15% it was 3.67 percentage points. The pooled sample

mean of sk was roughly 17%. Similar relative orders of magnitudes hold for sh and (n+ δ + g), as

shown in Table 2. While it is hard to know what the appropriate level of measurement error would

be, the range of values displayed in Table 2 does not seem unreasonable.

3.1.4 Regressions on Simulated Data

Having generated our simulated true data and shocked it with classical measurement error, we can

now evaluate the bias properties of alternative estimators in the presence of correlated country-

specific effects and measurement error. We estimated equation (8) on our draw of simulated data

using four estimators: fixed-effects (FE), between (BE), random effects (RE) and Arellano-Bond

(AB). We stored the estimated slope coefficients from each run, and repeated this procedure 1000

times. We then computed the means of the resulting estimates, and compared those to the known

true parameters. The difference between the mean estimates and the corresponding true parameters

gives a measure of bias for each estimates of the slope parameters in γ. The average absolute value

of these biases across parameters is used as summary measures of bias across the slope elements of

γ. Although our discussion of the results focuses on bias, the standard errors of the estimates from

simulated data are also available to examine the efficiency properties of the estimators (we briefly

discuss this in Section 4).

33Since the average absolute value of the shock on income may seem too large, we examine in Section 4.1 what

happens when we reduce the extent of measurement error on income without changing it for the other variables.
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3.2 Baseline Simulation Results

3.2.1 10% Measurement Error

In our baseline case, we set the error-to-truth ratio F equal to 10% for all the right-hand side

variables in the model, and the extent of the correlations between the fixed effects and the regressors

is as described in Table 1. Table 3, column 3 presents the resulting estimates based on averages

over 1000 runs. In terms of the average absolute value of bias on the slope parameters, our results

reveal that the BE estimator dominates by a wide margin: average absolute bias is 33%, versus a

value in the neighborhood of 200% for the other three estimators. As suggested by econometric

theory, estimators that use the within variation exacerbate measurement error bias, and between

averages it out.

Turning to individual coefficient estimates, BE tends to bias the estimate of the convergence

parameter γ4 upward by 19% - the average simulated coefficient is 0.990 versus a true coefficient

of 0.832 (the implied speeds of convergence, i.e. λ parameter, are respectively 3.68% and 0.2%).34

In contrast, both the FE and AB severely bias this coefficient downwards, with average biases of

−78% and −89% respectively, implying very high speeds of convergence (respectively 33.99% and

47.10%). In terms of the pattern of coefficients, this broadly replicates the finding of the literature

- where the FE or AB estimates of the convergence speed are an order of magnitude higher than

the between estimate. CEL, for example, report a speed of convergence of 10% per year based

on the AB estimator - 5 times larger than the 2% cross-sectional estimate in MRW.35 Our results

suggest that the finding of fast convergence in the literature employing fixed-effects estimators may

be traceable to the incidence of exacerbated measurement error bias.

Turning to the other slope parameters of the Solow model, interesting results also emerge. While

all the estimators involve some bias, the direction and magnitudes of the biases differs sharply. BE

34To calculate λ from the estimate of γ4, simply compute λ = − log(γ4)/τ where τ = 5.
35The precise extent to which γ4 is biased downwards when using FE and AB in our simulations obviously depends

on the postulated extent of measurement error and the postulated correlations between µi and the elements of xit.

If the error-to-truth ratio is brought down to 5%, the estimated speed of convergence is brought down to 22.05% for

FE and to 32.50% for AB. These values remain higher than those reported in the literature. In Section 4.1 we discuss

how to obtain more reasonable values of FE and AB estimates of the convergence speed by reducing the extent of

measurement error on the income term log yit - Section 3.2.3 suggested that the average absolute value of the shock

to yit might be too high, on the order of $2, 000 for the pooled sample in the baseline simulation with F = 10%. This

is to be compared for a pooled sample mean of simulated income equal to roughly $5000.
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tends to bias the human capital parameter slightly away from zero: the coefficient on log sh,it is

biased upward by 6%. The corresponding bias when using FE is a downward bias of −209% - the

coefficient switches signs. Again, our simulation account for differences between estimators found in

the literature - where FE typically lead to a coefficient estimate on the human capital accumulation

variable that is closer to zero than BE. For example, Islam [1995] shows that the estimated BE

coefficient on log sh,it is roughly 0.182, and equals −0.071 when using FE. Our corresponding BE
estimate is 0.105, and our FE estimate is −0.108. Similar comparisons would hold when we turn to
AB rather than FE - the accumulation parameters are both severely biased towards zero, and the

depreciation parameter γ3 is biased away from zero. Again, our results suggest that the finding of

smaller effects of the accumulation variables in the fixed-effects literature compared to the cross-

sectional literature may be largely attributable to measurement error bias.

AB estimates are very close to the FE estimates, suggesting, as detailed in Section 2, that the

weak instruments problem may be prevalent here. To evaluate this more formally, we implemented

the test of the null hypothesis of weak instruments suggested by Stock and Yogo [2003], using

the real world data that serves as a basis for our simulations. This test is based on computing

the Cragg-Donald [1993] statistic, a generalization of the first-stage F-test for the case of multiple

endogenous regressors.36 The statistic is then compared to the critical values in Stock and Yogo

[2003]. The critical values depend on parameter b, the maximum amount of squared bias that the

researcher is willing to accept relative to squared OLS bias (in our case, FE bias). For instance, a

value b = 0.1 indicates that the maximal allowable bias of the IV estimates is 10% of the maximum

OLS bias. In our case, the value of the Cragg-Donald statistic was 1.513, which is smaller than all

critical values whatever the value of b presented in Stock and Yogo [2003] (these range from 5% to

30%). Thus, we fail to reject the null of weak instruments at the 5% significance level even when

we are willing to accept a high level of AB bias relative to FE bias.37

36 In our application we allow all the right hand side variables to be predetermined - so that all four regressors

are instrumented for. In doing this we follow the practice in CEL. Strictly speaking however, in our simulation only

lagged income is endogenous. See the discussion after equation (13). Formally, the Cragg-Donald statistic is the

smallest eigenvalue of the matrix analog of the F-statistic from the first stage regression. See Stock and Yogo [2003].

37We also implemented the Staiger and Stock [1997] rule of thumb based on the first stage F-statistics. Strictly

speaking, the rule of thumb is only valid for the case of one endogenous regressor. But the values of our first stage

F-statistics were sufficiently below 10 to reinforce our confidence that the weak instruments problem is important

here. The F-statistics for the first-stage regression of lagged first-differenced initial income on its instruments was

4.73, and the corresponding values for savings on physical capital, savings on human capital and the depreciation
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As long as the first stage relationship between the instruments (in levels) and the regressors

(in first differences) is not exactly zero, the weak instruments bias should vanish in large samples.

To further examine whether weak instruments are responsible for the AB bias we observe in our

simulations even without measurement error, we reran our simulations setting N = 1000 instead

of N = 69. The results (available upon request) decisively indicate that the weak instruments

problem is almost entirely responsible for the AB bias. The bias almost goes away when the cross

sectional sample size is raised to 1000 (the average absolute bias is 3% instead of 16%). As soon

as measurement error is introduced, however, large AB biases reappear even when N = 1000. The

reason is that the introduction of measurement error weakens the first stage relationship between

the differenced regressors and the levels instruments, considerably slowing down convergence to the

true parameters as the sample size is raised.

Finally, Table 3 also reveals that RE performs more poorly than the other three estimators

when the summary measure of bias is the average absolute value of the bias (here 235% compared

to 33% for the between estimator). This is significant because this estimator is frequently used by

growth regression practitioners who wish to retain the panel dimension but are unwilling to discard

all the between variation in the data. However, RE does quite well in estimating the convergence

parameter, displaying a bias of only −16%. The other slope parameters are all biased upwards.
For instance the coefficient on log sk,it is biased upward by 107%. One possible reason is that,

contrary to between, RE does not average measurement error over time, nor does it address the

problem of heterogeneity bias. The interaction of these two biases, which is hard if not impossible

to characterize analytically, turns out to result in large net biases in this particular application.

3.2.2 Varying the Extent of Measurement Error

Increasing the error-to-truth ratio to 15% or reducing it to 5% does not generally change the

conclusions reached above (Table 3, columns 2 and 4). As expected, the average absolute bias

tends to (weakly) increase with the error-to-truth ratio for most estimators, though this is not

necessarily true for individual parameter estimates. An interesting feature of our simulations is

how increases in the extent of measurement error across columns of Table 3 seem to little affect the

BE estimate of the coefficient on lagged income per capita - in fact the upward bias on γ4 remains

equal to 18− 19% whatever the value of F .

term were, respectively, 4.03, 2.71 and 2.22.
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Interesting lessons can also be learnt when measurement error is shut down entirely. While

unrealistic, this exercise allows us to isolate the incidence of heterogeneity bias in BE estimates,

and of endogeneity bias in FE estimates. Table 3, column (1) presents simulation results when

F = 0. As predicted, BE still tends to create an upward bias on the lagged income coefficient,

an upward bias on the effect of human capital, and a small downward bias on the depreciation

term. Clearly, the strong positive correlation between the country-specific effect and the lagged

income term, built into our simulations, accounts for the upward bias on log yit−τ when country

fixed effects are not included in the regression. The results suggest that most of the bias in the BE

estimates seen when F is set to a value different from zero is attributable to heterogeneity bias, as

the biases on individual coefficients change little as F is increased. In other words, BE does a good

job at averaging away measurement error.

When F = 0, FE estimates are also biased. This is due to the endogeneity problem inherent

in this type of dynamic panel. Our simulations allow us to quantify this problem. The biases are

relatively small, especially on the main parameter of interest γ4 (biased downwards by −5%). This
bias quickly gets swamped by measurement error bias when F is increased. The AB estimator,

which is supposed to get rid of endogeneity bias, does display biases of similar magnitudes as FE.

Moreover the biases on the various slope parameters are similar in signs and relative magnitudes

to the FE biases. As discussed above, this is due to the weak instruments problem, which tends to

bias AB estimates towards FE.

To summarize, as predicted by theory, when measurement error is not present, BE is tainted by

heterogeneity bias, the other estimators perform better and the AB estimator in particular performs

best. However, this case is unrealistic since we are unable to replicate the broad findings obtained

across estimators with real data when setting F = 0. Even in the presence of a small amount of

measurement error (F = 5%), large biases appear when using FE, and the BE estimator asserts

itself as the dominant estimator in terms of average absolute bias. Moreover, in that case we are

able to broadly replicate the pattern of estimates found in the literature across estimators.

3.2.3 Varying the Extent of Heterogeneity Bias

We now examine how our results change when we vary the extent of heterogeneity bias, holding

measurement error fixed at some baseline level. As described in Section 3.1.2, the assumed correla-

tions between the right hand side variables and the country fixed effect µi used to draw simulated
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data were based on estimated values of µi from an FE regression. We know from econometric theory

that in the presence of measurement error, these estimated µis will be inconsistent estimates of the

true country fixed-effects, therefore their sample correlations with the regressors will themselves be

flawed. Hence, it is critical to examine what happens when we change these assumed correlations.

Table 4 displays simulation results when varying the correlations between the country-specific

effects and the regressors, while setting F = 10%. Table 1 showed that the correlations used for

our baseline simulations were high. For example, in the pooled sample the correlation between

our estimated µi and log yit−τ was 0.93, and the correlation with log sh,it−τ was 0.80. Here we

simply multiply all these assumed correlations, variable-by-variable and period-by-period, by a

single constant C < 1, prior to generating the simulated data.38 We allowed C to take on the

values 0%, 5% and 75%. For the sake of comparison, column (5) of Table 4 also reports the results

obtained when C = 100% (i.e. column (3) of Table 3).

Table 4 demonstrates that the biases obtained under FE when varying C do not change drasti-

cally, suggesting that most of the FE bias comes from measurement error.39 Notably, the estimate

of γ4 changes relatively little (from −56% when C = 0% to −78% when C = 100%). As expected

from econometric theory, the AB estimate of γ4 exhibits an even greater degree of stability across

values of C.

We now turn to the BE estimator in the extreme case where C = 0. Again, this is an unrealistic

assumption, but it allows us to evaluate the incidence of measurement error in isolation from

heterogeneity bias. We observe that the average absolute value bias is increased (to 157% compared

to 33% when C = 100%), but that the pattern of signs and relative magnitudes for the bias is

roughly in line with the results in column (3) of Table 3. The convergence parameter γ4 now exhibits

a larger bias (34% rather than 19%). The same pattern holds for all the other slope parameters: as

C rises, the extent of bias is progressively reduced, illustrating nicely a main message of this paper:

as the incidence of heterogeneity bias rises, it increasingly mitigates the problem of measurement

error for the BE estimator. In this case, the two sources of bias tend to cancel each other out.

38That is, we modified the relevant entries of the data covariance matrix Ω̂x,µ used to generate the simulated series.

39We should not expect the FE estimates to remain unchanged when varying the value of C. While it is true that

this estimator eliminates the country specific effect by differencing the data from country means, the extent of bias

may vary as C is modified, as such a change will affect the properties of the simulated µi and thus those of the

simulated log yit−τ .
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As C is increased to 50% and then to 75%, the mean estimated slope parameters from BE

progressively converge to the values in column (5), and mean absolute value bias decreases steadily.

To summarize, variations in the incidence of heterogeneity bias do not change the lessons of our

baseline simulations regarding convergence: even when we change the incidence of heterogeneity

bias, BE and RE provides the closest estimates of the speed of convergence. The signs of the biases

on the parameters of the steady-state determinants are robust to changes in C for all estimators. As

before FE and AB always bias downwards estimates on the accumulation variables, bias upwards

the estimate on log(n+ g + δ)it−τ and result in much too fast an estimated speed of convergence.

4 Extensions

This section considers various modifications of our basic simulation method. We consider what

happens when we change assumptions on the nature of measurement error. We also examine the

properties of two additional estimators frequently used in the empirical literature on economic

growth.

4.1 Varying measurement error on income

While our baseline simulation results replicate the broad differences in past findings on convergence

and the determinants of steady-state income level across estimators, the estimated speed of con-

vergence under the FE and AB estimators was too high relative to the BE estimate - we obtained

an FE estimate of λ = 33.99% and a BE estimate of λ = 0.21%, while the literature finds values

in the neighborhood of 10% and 2%, respectively. Moreover, in Section 3.1.3 we showed that an

error-to-truth ratio of F = 10% implies an average absolute value error in measurement of roughly

$2, 000, while the mean of simulated income was $5, 000. While it is difficult to know what the

appropriate extent of measurement error is, this is probably too big.40 In this subsection we exam-

40 In contrast, the extent of measurement error on the other variables, implied by setting F = 10%, seemed more

realistic. Some have argued that per capita income may be better measured than savings rates on human capital sh,

physical capital sk and the depreciation variable (n+ g+ δ). In principle population growth n will be well-measured,

but recall that we had to make an assumption of constancy across time and countries for δ and g, which surely

introduces error. Similarly, sh in the Solow model should be measured by dollars saved per unit of time for the

purpose of financing education, but we followed the literature in proxying for this using gross enrollment rates in

secondary education. However, it is well-known that different methods of computing price indices and PPP exchange

rates can deliver vastly different estimates of PPP income.
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ine whether reducing the extent of measurement error on log income can help match convergence

speeds estimated in the literature: we reduce the extent of measurement error on the income term

(Fy), while maintaining F = 10% on the other variable. We consider values of Fy equal to 0%, 1%,

2.5%, and 5%.

We might expect reduced measurement error on log yit to reduce attenuation bias on its coef-

ficient and thereby improve the performance of the FE and AB estimators (though this of course

is not always true in the presence of measurement error on the other variables). Our intuition

turns out to be borne out: Table 5 demonstrates that with a value of Fy = 1%, we obtain FE and

AB estimates of λ that are much closer to those found in the past literature: 9.19% and 10.81%,

respectively. With Fy = 1%, the average absolute value of the error in measurement on yit is $618,

which is perhaps a more realistic value than those implied by Fy = 5% and more. The BE estimate

of γ4 is unchanged compared to our baseline simulations, with a 19% upward bias, confirming our

suggestion that most of this bias is attributable to the omission of the country-specific effect µi.

In general, the average absolute value bias becomes much lower for the AB and FE estimators,

largely because the bias on the income term is now reduced. In fact, when we set Fy = 0, these

estimators get convergence almost right, suggesting that measurement error in this variable is

important to replicate the pattern of γ4 estimates found in the literature.

To summarize, when we allow for a smaller error-to-truth ratio on income, we are able to obtain

FE and AB estimated speeds of convergence that are much closer to those obtained when using

real data. The extent of bias on the other parameters is not affected very much by measurement

error on income. We still get BE estimates of γ4 that are too large (and therefore BE estimates of

λ that are too small) relative to the existing cross-country literature. We will see why in Section

4.4.

4.2 Country-specific measurement error

The extent of measurement error probably varies from country to country, and is correlated with

country characteristics such as per capita income. Fortunately, we do have some information on

the accuracy of statistics used in most empirical growth studies: PWT6.1, acknowledging that all

of their PPP adjusted data is probably measured with some error, includes a data quality rating

for each country. The scale of the rating runs from A to D, which we recode as running from 1 to

4, so that countries with less accurate data have a higher rating.
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We exploited this information by adjusting the error-to-truth ratio to allow it to vary across

countries in proportion to the PWT6.1 data quality rating. Since the extent of measurement error

is probably correlated with some of the other variables used as regressors, we added the PWT

data quality indicator as another variable for the purpose of computing the covariance matrix of

the observed right-hand side variables, thus allowing simulated data quality ratings to covary with

the other simulated variables. For example, lower income is associated with lower data quality.

This expanded covariance matrix for the actual data was then used to draw the simulated data,

including a simulated data quality rating. Finally, after drawing the errors in measurement, we

multiplied them by the country’s normalized simulated data quality rating. The simulated data

quality rating is normalized by its average. So if F = 10%, a country with the average level of

data quality would have an error-to-truth ratio of 10%, while a country with twice the average data

quality rating would have an error-to-truth ratio of 20%.

Results displayed in Table 6 show that this extension does not change our basic results. With

F = 10%, BE still performs best at estimating the rate of convergence with an upwards bias of 19%

on γ4. On the other hand, FE displays a downwards bias of 78% and AB leads to a downwards

bias of 89%. BE still outperforms the other estimators in general, with an average absolute bias

of 33% compared to 212% for the fixed-effects estimator and 213% for the AB estimator. In fact,

a comparison of the entries of Table 6 with those of Table 3 reveals very little difference. Thus,

allowing the variance of measurement error to depend on observables does not change our findings.

4.3 Autocorrelated measurement error

So far, we have assumed classical measurement error, i.e. the error in measurement was purely

white noise. However, errors in measurement could be autocorrelated across time. For instance,

if a country has over-reported the amount of savings in physical capital in one period, it may be

more likely to do so in subsequent periods. Hence, measurement error can be expected to persist

over time. Moreover, as discussed in Section 2, persistent measurement error invalidates the IV

procedure of the AB estimator when it comes to addressing measurement error bias, since the

error in measurement in lagged regressors (the instruments) is no longer independent from error

in measurement in the regressors. In this subsection, we run simulations where autocorrelation

is built into measurement error, as a further robustness check. Specifically, for each regressor xq
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(q = 2...4) and for the income term log yit, we set: dq,it = ρddq,it−τ + ζit

dy,it = ρddy,it−τ + ϑit
(28)

where we still maintain dq,it ∼ N
¡
0, F σ̂2qt

¢
and dy,it ∼ N

¡
0, F σ̂2yt

¢
. In other words, the T (Q− 1)×

T (Q− 1) variance covariance matrix of the errors-in-variables, Ω̂d, is now block diagonal, with the
diagonal elements identical to what they were before and the off-diagonal elements of each T × T

block as implied by equation (28). Errors are then drawn from a multivariate normal distribution

with mean zero and covariance matrix Ω̂d, as before.

In this case, we do have some theoretical priors as to how persistence in measurement error

might affect the results. If measurement error is highly persistent over time, we would expect

FE to perform better relative to the case of ρd = 0, for two reasons: first, with persistence in

dq,it, some of the measurement error will be differenced away when the data is differenced from its

country means. In other words, the greater the autocorrelation in measurement error, the larger

the between component of measurement error and the smaller the within component. Since FE

will difference away the between variation, we expect greater autocorrelation in the measurement

error term, all else equal, to improve the performance of FE relative to BE. In the limit, when the

autocorrelation coefficient ρd is 1, we would expect FE to get rid of all of the measurement error,

as it will get entirely differenced away.41

We ran simulations when the measurement error autocorrelation term was ρd = 0.5, ρd = 0.75

and ρd = 0.90, setting F = 10%. The results in Table 7 show that our theory-driven priors

are confirmed by the simulations. Average absolute value bias declines with ρd in FE and AB

estimators. When the autocorrelation term is only 50%, the convergence coefficient γ4 exhibits a

20% bias using the BE estimator and a −49% bias using the FE estimator (in the baseline case of

ρd = 0, the corresponding numbers were 19% and −78%, respectively). When the autocorrelation
term is increased to 75%, the bias on the BE estimate of γ4 rises to only 21%, and the bias on the

FE estimate declines to −35%. Finally, when the autocorrelation term is increased all the way to

90%, which is probably much too high, the BE coefficient has a bias of 21% and the FE bias of

−25%. Therefore, while we confirm our intuition that the FE estimator improves relative to the

BE estimator when we increase persistence in measurement error, BE tends to do better or as well

41We checked that this is the case, and the results are available upon request.
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as alternative estimators even as ρd is raised to implausibly high levels. Even high persistence in

measurement error does not invalidate the overall conclusions reached in the baseline case.

4.4 Variance Properties

Up until this point, we have focused only on the bias generated by the various estimators. However,

when evaluating the properties of estimators in an empirical study, one might also look at the

standard errors and t-statistics of the estimators to check their efficiency properties. In order to

check to see whether or not our gains or losses in bias were being offset by gains and losses in the

standard errors of the estimators, we ran simulations that checked the mean squared errors and

t-statistics of the estimators for our baseline case of F = 10%. For each estimator the mean squared

error reported is the mean of each coefficient’s squared error across 1000 runs, and the t-statistic

reported is the mean of 1000 individual t-statistics from each run. The results are reported in

Table 8. As we can see from these results, there is no trade-off between bias and efficiency. In the

baseline case, BE, which has the lowest average absolute bias, also has the lowest sum of mean

squared errors and significantly high t-statistics on every coefficient except for log(n+ g + δ)it−τ .

Looking at individual coefficients, the BE estimator has the lowest MSE on every coefficient except

the convergence coefficient. Even on this last coefficient, where RE is the better performer, the

difference between BE and RE is quite small. Because MSE is a widely used device to measure the

trade-off between bias and error, this observation makes a strong case that BE is superior on both

bias and variance grounds.

4.5 Other Estimators

4.5.1 Flexible random effects (SUR)

In this subsection, we evaluate the bias properties of the Seemingly Unrelated Regressions (SUR)

estimator, commonly used in the empirical growth literature (see, for example, Barro and Sala-i-

Martin 1995, chap. 12). This estimator is computationally close to the RE estimator in that it

also weighs the between and within variations in the data. However, in contrast to RE, the SUR

estimator does not assume the within-country correlation in the error term to be the same across

subsequent time periods, but instead allows it to vary. For example, the covariance between εi1

and εi2 is allowed to differ from the covariance between εi2 and εi3. Thus, we can refer to the SUR

estimator as a flexible RE estimator, as the residual covariance matrix is less restrictive. This is
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expected to lead to efficiency gains. Moreover, the weighing of the between and within variations

will now differ from the RE weighing scheme, and be a complicated function of the variance of the

fixed-effects, the variance of the error term µi + νit and its autocorrelation structure. Thus, the

bias properties of SUR may differ from those of random effects if the country-specific effects are

correlated with the regressors, since it will weigh the within and between variations differently.

Results in Table 9 show that the estimates are not very different from RE (for the sake of

comparison Table 9 also includes the RE results already presented in Table 3), but SUR does

better overall than RE across values of F . For example, the convergence coefficient γ4 displays

a bias of −4% with SUR and −16% with RE when F = 10%. In fact, SUR overall is the best

estimator when it comes to estimating the speed of convergence λ. In terms of average absolute

bias, SUR does better than RE whatever the level of measurement error. Both estimators do

particularly well in estimating the speed of convergence, but both tend to greatly bias away from

zero the estimates on steady-state determinants.

4.5.2 The Mankiw, Romer and Weil estimator

The BE estimator does not strictly correspond to the cross-sectional estimator often used in the

cross-country growth literature. Indeed, it involves the time averaging of all variables, including

the income term on the left-hand side and lagged income on the right-hand side. In contrast, cross-

sectional estimators in the class of MRW’s OLS estimator are based on the following regression:

log yi,2000 = γ0 + γ1log sk,i + γ2log sh,i + γ3log (n+ g + δ)i + γ4 log yi,1960 + ϑit (29)

where "" denotes averages computed over the whole period. Contrary to the BE estimator, income

enters as end and beginning of period values (our total period spans 1960-2000), so measurement

error in the initial income term does not get averaged away.42

Table 9 displays the simulation results, with the appropriate correction. For comparability, we

also reproduce the BE results from Table 3. The MRW and BE biases are very similar in terms of

magnitudes and signs. However, MRW does slightly better than BE in terms of average absolute

bias across values of F . This partly reflects a lower bias on the convergence parameter γ4. Since

lagged income does not get averaged, measurement error on this variable counteracts the upward

42Note also that in this application τ is set to 40, requiring a correction to ensure the comparability of the estimated

reduced form coefficients with BE estimates.
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bias from the omission of µi to a greater degree than BE. These results confirm that simple OLS

cross-sectional estimators are best at limiting net overall bias resulting from heterogeneity and

measurement error.

4.5.3 The Arellano-Bover/Blundell-Bond estimator

We argued in section 3.2 that weak instruments led to bias in the AB estimates when the sample

was small, and that measurement error exacerbates this small sample bias and reduces the speed at

which estimates converge to the true parameters as N increases. This problem has received increas-

ing attention in the dynamic panel data literature, and Arellano and Bover [1995] and Blundell and

Bond [1998] have developed a "system GMM" estimator to address it.43 In addition to instrument-

ing for differenced variables using lagged levels (see equation 13 and the discussion that follows),

both papers suggest using lagged differences to instrument for levels variables. Both the equation

in first differences (with levels instruments) and the equation in levels (with first-differenced in-

struments) are included in the system, so as to exploit the additional moment conditions valid for

the latter equation. This procedure will be valid under a stationarity assumption that covariance

between log yi,t−τ and µi is constant across values of τ (this assumption must be made in addition

to all the assumptions required for the AB estimator). Indeed, if E(µiyi,t−s) = E(µiyi,t−r) for all

s, r, then the moment condition E(µi (yi,t−s − yi,t−r)) = 0 can be used in a GMM procedure that

employs yi,t−s − yi,t−r as an instrument for yi,t−τ (where s > r ≥ τ).

Table 9 presents simulation results using the Blundell-Bond (BB) estimator. This estimator

behaves in ways similar to the RE and pooled OLS estimators. Namely it does pretty well at

estimating the speed of convergence, but generates large upwards biases on the estimated coefficients

on the steady-state determinants. Since this estimator includes specifications in levels in addition to

first differences, the similarity between the biases it exhibits and those of pooled OLS might indicate

the weak instruments problem remains prevalent. However, the biases did not vanish as the sample

size was raised to N = 1000 or even N = 5000. An alternative explanation for the bias is that the

stationarity assumption required for the moment condition E(µi (yi,t−s − yi,t−r)) = 0 is violated.

In the context of our simulations, this assumption can be evaluated directly.44 We computed the

covariances between yi,t−s and µi for all periods in a simulated dataset with N = 2000. The

43This estimator has been used in the growth literature by Levine, Loayza and Beck [2000].

44We are not aware of a formal test for stationarity in this context, but simply examining the covariances over time

can help determine whether they are roughly equal.
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covariances increased steadily with time, ranging from 1.63 from period 1 to 3.46 for period 8. The

violation of the stationarity assumption may therefore account for the disappointing performance

of the BB estimator in the specific context of growth regressions.

5 Conclusion

In this paper, we have used Monte Carlo simulations to evaluate the econometric methods commonly

used to estimate growth regressions. Our results suggest that, in the presence of measurement error,

fixed-effects and the Arellano-Bond GMM estimator lead researchers to overestimate the speed of

convergence and to underestimate the impact of several common determinants of the steady-state

level of income, such as human capital. Simple OLS on variables averaged over time provides a

closer estimate of the speed of convergence, but overestimates the magnitude of the effect of steady-

state determinants. These findings were shown to be robust to changes in the specification of

measurement error and to varying assumptions about the incidence of heterogeneity bias. Running

Monte Carlo simulations required that we take the Solow model seriously as the data generating

process for our simulated series. However, many of the lessons learnt here can be applied readily

to other related specifications in the empirical literature on cross-country comparisons of income,

growth and other variables.

Until now, differences in speeds of convergence across estimators were interpreted as imply-

ing that heterogeneity bias was prevalent in cross-sectional growth regressions, since fixed-effects

methods were thought to correct for this bias and led to a speed of convergence roughly 5 times

higher than that estimated using a between estimator. This paper has overturned this interpreta-

tion, showing instead that the difference in estimated convergence speeds is in fact attributable to

greater bias from measurement error when using this class of estimators. The estimated speed from

traditional cross-sectional regressions is in all likelihood closer to the true speed of convergence.

Of course, our simulations can only characterize the properties of the estimators. They cannot

inform us as to the actual speed of convergence or the impact of steady-state determinants, since

we simulated our data by assuming values for these parameters implied by a strict application of

the Solow model. This strict application led to postulated parameters that may or may not hold

true in actual data. Table 10 displays the results from estimating our basic specification using the

new PWT version 6.1 data and updated series for the secondary school enrollment rate from Barro

and Lee. We are able to replicate the basic findings of the past literature in this data: the speed
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of convergence is roughly 5 times larger under FE and AB (respectively 4.6% and 5.3%) compared

to BE (0.8%). Our simulation results suggest the latter number is likely to be much closer to the

truth. All the other estimators, that do not isolate the within variation in the data (namely MRW,

SUR and RE) lead to estimated speeds of convergence that lie between 0.8% and 1.6%, while FE

and AB lead to estimates in the neighborhood of 5%.

The speed of convergence we report based on the application of the BE estimator, less than

1%, falls short of the number typically reported in the cross-sectional literature. Barro and Sala-i-

Martin [1995] cite a number closer to 2%, based on the previous version of PWT.45 This difference

is not attributable to our use of new and extended data.46 Past cross-sectional estimates rely on

an OLS specification closer to the MRW estimator described above, where the current and lagged

income terms do not get averaged over time. Implementing this estimator, we obtain a convergence

speed of 1.62%, which is closer to existing estimates. Given that BE and MRW have been shown

above to somewhat understate the speed of convergence, a number in the neighborhood of 2% for

λ does not seem unreasonable.

The slope parameters on the determinants of the steady-state level of income are reduced in

magnitude when using FE or the AB estimator. They are similar across estimators that use at

least some between variation in the data (BE, SUR, RE and MRW). For example, the impact of

the log of the enrollment rate is equal to 0.04 using the BE estimator, and is significant at the 1%

level. As in Islam, this estimate switches signs (to −0.03) when using the FE estimator, and is
statistically insignificant.

Our paper illustrates an econometric second best property: by addressing one source of bias

(stemming from omitted variables), the application of a certain class of estimators makes another

source of bias worse (measurement error). Unfortunately, simulation exercises such as ours almost

always come too late in empirical economics.

45This is also true for the (biased) FE estimated speed, which at 5% is about half of the convergence speeds reported

in CEL [1996] and Islam [1995].

46We removed the 1990-1999 decade to check this, and our results were unchanged. In an effort to maintain a

balanced panel and cover as wide a time period as possible, our regressions also feature only 69 countries. This

was not responsible either for the reduced speed of convergence, as results obtained with more countries using an

unbalanced panel were essentially the same. All these results are available upon request.
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Appendix 1 - Limiting Values of the Between, Fixed-Effects and
Random Effects Estimators

This appendix derives the limiting values of the BE, FE and RE estimators in the multivariate

case. As in the text, assume that the true model is:

log yit = γ0xit + µi + εit (30)

where all these variables are as defined in Section 2. As in subsection 2.3, we also abstract from

the dynamic nature of the model (i.e. assume plimX 0ε = 0).

Assume also that xit is imperfectly measured. Instead of observing xit, we can only see x∗it =

xit + dit, where E [dit|xit] = 0 for all observations and var [dit|xit] = D = diag
n
σ2d1 , σ

2
d2
, ..., σ2dk

o
.

We can derive the following unconditional expectations for three variables of interest:

E (yit, x
∗
it, µi) =

¡
γ0x̄+ µ̄, x̄, µ̄

¢
(31)

Their unconditional variance is:

V (yit, x
∗
it, µi) =


σ2ε + γ0Σxxγ + 2γ0Σµx + σ2µ γ0Σxx +Σ0µx γ0Σµx + σ2µ

Σxxγ +Σµx Σxx +D Σµx

γ0Σµx + σ2µ Σ0µx σ2µ

 (32)

In order to analyze the properties of the BE and FE estimators further, it is useful to break down

the variation on each variable into within-country variation and between-country variation. Define

the between-country variance for xit as:

ΣBxx ≡ E

"Ã
1

T

TX
t=1

xit

!Ã
1

T

TX
t=1

x0it

!#
−E

Ã
1

T

TX
t=1

xit

!
E

Ã
1

T

TX
t=1

x0it

!
(33)

and the within-country variance to be:

ΣWxx ≡ E

"Ã
xit − 1

T

TX
t=1

xit

!Ã
x0it −

1

T

TX
t=1

x0it

!#

−E
"
xit − 1

T

TX
t=1

xit

#
E

"
x0it −

1

T

TX
t=1

x0it

#
(34)

It is well-known that:

Σxx = Σ
W
xx +Σ

B
xx (35)
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It is also easy to show that, for the covariance between xit and µ, Σµx = ΣBµx. Finally, Σ
B
xx∗ , the

between covariance matrix of the imperfectly observed data x∗, is defined as:

ΣBxx∗ ≡ E

"Ã
1

T

TX
t=1

xit + dit

!Ã
1

T

TX
t=1

x0it + d0it

!
−E [xit + dit]E

£
x0it + d0it

¤#
= ΣBxx +

1

T
D (36)

It is also easy to show that:

ΣWxx∗ = Σ
W
xx +

T − 1
T

D (37)

We are now ready to derive the plims of the BE and FE estimators in the presence of measurement

error and in the multivariate case.

First consider the BE estimator (OLS on country means across time). Using standard OLS

results, we can derive:

plim γ̂BE =

µ
ΣBxx +

1

T
D

¶−1
ΣBxxγ +

µ
ΣBxx +

1

T
D

¶−1
Σµx (38)

Now consider FE. To eliminate the heterogeneity bias arising through the correlation between the

time invariant country-specific effects and the regressors, the most obvious solution is to use the

FE estimator. By the Frisch-Waugh theorem, we can show that:

γ̂FE =
¡
X∗0McX

∗¢−1X∗0Mcy (39)

where:

Mc = I − C
¡
C 0C

¢−1
C 0 (40)

and C is an (NT ×N) matrix that stacks dummy variables for the different countries (with sub-

vectors of T ones along the diagonals, zero elsewhere). Then:

plim γ̂FE =

µ
ΣWxx +

T − 1
T

D

¶−1
ΣWxxγ (41)

Finally, as is well-known, RE is simply a matrix-weighted average of BE and FE estimates:

γ̂RE =
³
Σ̂Wxx∗ + θ̂Σ̂Bxx∗

´−1 ³
Σ̂Wxx∗ γ̂

FE + θ̂Σ̂Bxx∗ γ̂
BE
´

(42)

where Σ̂Wxx∗ and Σ̂
B
xx∗ are the sample estimates of Σ

W
xx∗ and Σ

B
xx∗ , respectively, and θ̂ is an estimate

of θ where:

θ =
σ2ε

Tσ2µ + σ2ε
(43)
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i.e. θ is the weights given to the BE estimator. Then:

plim γ̂RE =

·µ
ΣWxx +

T − 1
T

D

¶
+ θ

µ
ΣBxx +

1

T
D

¶¸−1
×
·µ
ΣWxx +

T − 1
T

D

¶
γFE + θ

µ
ΣBxx +

1

T
D

¶
γBE

¸
(44)

Note that when the variance of the error term εit is zero, RE reduces to FE.

To summarize, we have derived the following:

plimbγPOLS = (Σxx +D)−1Σxxγ + (Σxx +D)−1Σµx

plim γ̂BE =
¡
ΣBxx +

1
TD

¢−1
ΣBxxγ +

¡
ΣBxx +

1
TD

¢−1
Σµx

plim γ̂FE =
¡
ΣWxx +

T−1
T D

¢−1
ΣWxxγ

plim γ̂RE =
£¡
ΣWxx +

T−1
T D

¢
+ θ

¡
ΣBxx +

1
TD

¢¤−1
× £¡ΣWxx + T−1

T D
¢
γFE + θ

¡
ΣBxx +

1
TD

¢
γBE

¤

Appendix 2 - A Simple Univariate Example

To illustrate the effects at play in the presence of both heterogeneity bias and measurement

error, we consider the case where xit is unidimensional, and contrast estimation by pooled OLS

and FE. Consider the following relationship with a single observed regressor and an intercept term:

yit = γ0 + γ1xit + µi + εit (45)

Suppose that the observed variable x∗it incorporates measurement error:

x∗it = xit + dit (46)

where dit is independent of the true xit. The variance of the measurement error and of xit are,

respectively, σ2d and σ2x.

By estimating (45) using pooled OLS, we get both an omitted variables bias due to the fact that

µi is potentially correlated with xit, and a measurement error bias due to the correlation between

εit and x∗it. The limiting value of the pooled OLS estimate of γ1 is as follows:

plimbγPOLS1 =
γ1

1 +
σ2d
σ2x

+
cov(xit, µi)

σ2x + σ2d
(47)
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In equation (47), the two sources of bias appear clearly. The variance of measurement error con-

tributes to lessen the extent of heterogeneity bias, as it appears in the denominator of the expression

on the right hand side of (47).

Consider now FE estimation, still in the univariate case. To simplify things and without loss

of generality, assume that we difference away the time invariant individual effects by taking first

differences, rather than by taking differences from country means of the data. The limiting value

of the FE estimate of γ1 is then:

plimbγFE1 =
γ1

1 +
σ2∆d
σ2∆x

(48)

where σ2∆d is the variance of the first differenced measurement error, and σ2∆x is the same for the

"true" regressor xit.

We have derived formal expressions for our estimate of interest in two cases. The second method,

FE, allows us to remove the heterogeneity bias but will exacerbate measurement error bias. To

see why, note that the error-to-truth ratio in the denominator of equation (48) will always have

increased compared to that under pooled OLS:

σ2∆d = var dit + var dit−τ − 2 cov(dit, dit−τ ) = 2σ2d (49)

σ2∆x = varxit + varxit−τ − 2 cov(xit, xit−τ ) = 2σ2x(1− ρx) (50)

where ρx = corr(xit, xit−τ ) is the autocorrelation of xit. Thus,

σ2∆d

σ2∆x

=
σ2d

σ2x(1− ρx)
>

σ2d
σ2x

(51)

In words, σ2∆x will be smaller relative to σ
2
x the greater the time persistence in xit (i.e. the higher

is ρx).

We have assumed until now that there was no time persistence in measurement error (i.e. we

had white noise errors-in-variables). This assumption is problematic in the context of data used

for growth regressions, where errors in measurement from one period are likely to carry over to the

next. In the case of autocorrelated measurement error, where we define ρd = corr(dit, dit−τ ), the

error-to-truth ratio under FE is:
σ2∆d

σ2∆x

=
σ2d(1− ρd)

σ2x(1− ρx)
(52)

It is then trivial to show that FE will exacerbate measurement error bias compared to pooled OLS

whenever ρd < ρx.
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Table 1 – Correlation Structure Among Regressors and Fixed-Effects 
 

 log sk,it-τ log sh,it-τ log(n+g+δ)it-τ log yit-τ µi 
Panel A – Pooled Data 

log sk,it-τ 1.0000  
log sh,it-τ 0.6046 1.0000  
log(n+g+δ)it-τ -0.3800 -0.5763 1.0000  
log yit-τ 0.6220 0.8086 -0.6640 1.0000 
µi 0.6248 0.8031 -0.5957 0.9273 1.0000

Panel B – Between Variation 
log sk,it-τ 1.0000  
log sh,it-τ 0.7160 1.0000  
log(n+g+δ)it-τ -0.5004 -0.6594 1.0000  
log yit-τ 0.7107 0.8691 -0.7154 1.0000 
µi 0.7096 0.9070 -0.6629 0.9622 1.0000

Panel C – Within Variation 
log sk,it-τ 1.0000  
log sh,it-τ 0.2104 1.0000  
log(n+g+δ)it-τ 0.0763 -0.2531 1.0000  
log yit-τ 0.1497 0.5400 -0.3799 1.0000 
µi 0.0000 0.0000 0.0000 0.0000 1.0000

 
 
 

Table 2 – Magnitude of Measurement Error on the Underlying Data  
(based on various values of F) 

 
  Income ($) Investment 

Rate  
(% GDP) 

Secondary 
Enrollment 
Rate (%) 

Population 
growth (%) 

Average Value of 
Unshocked Variable  

4997.15 17.17% 51.40% 1.59%

1% 617.646 0.92% 4.33% 0.06%

2.5% 1010.391 1.46% 6.52% 0.10%

5% 1332.400 2.03% 8.84% 0.14%

10% 2134.202 2.95% 13.94% 0.20%

Average Absolute Value 
of Shock  
with F= 

15% 2702.867 3.67% 16.05% 0.25%
Averages computed from simulated data for 2,000 countries in the 8-period panel, i.e. 16,000 pooled 
observations.
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Table 6 – Country-Specific Measurement Error, 1000 runs 
 

Error-to-Truth Ratio: F=5% F=10% F=15% 
Variable True 

Coeffs 
Mean Bias (%) Mean Bias (%) Mean Bias (%) 

Fixed Effects 
log sk,it-τ 0.099 0.022 -77% 0.003 -97% -0.015 -115%
log sh,it-τ 0.099 -0.100 -201% -0.110 -211% -0.096 -198%
log(n+g+δ)it-τ -0.197 -1.019 417% -1.106 461% -1.035 425%
log yit-τ 0.832 0.328 -61% 0.183 -78% 0.110 -87%
Avg. Abs. Bias   189%  212%  206%
Implied λ 3.68% 22.28% 506% 33.93% 822% 44.21% 1101%

Between 
log sk,it-τ 0.099 0.080 -19% 0.079 -20% 0.077 -22%
log sh,it-τ 0.099 0.109 11% 0.104 6% 0.101 2%
log(n+g+δ)it-τ -0.197 -0.025 -87% -0.025 -87% -0.029 -85%
log yit-τ 0.832 0.987 19% 0.990 19% 0.993 19%
Avg. Abs. Bias   34%  33%  32%
Implied λ 3.68% 0.27% -93% 0.20% -95% 0.15% -96%

Random Effects 
log sk,it-τ 0.099 0.163 66% 0.204 107% 0.230 134%
log sh,it-τ 0.099 0.268 172% 0.321 225% 0.350 255%
log(n+g+δ)it-τ -0.197 -0.893 353% -1.357 588% -1.666 744%
log yit-τ 0.832 0.789 -5% 0.700 -16% 0.638 -23%
Avg. Abs. Bias   149%  234%  289%
Implied λ 3.68% 4.73% 29% 7.14% 94% 9.00% 145%

Arellano-Bond 
log sk,it-τ 0.099 -0.045 -145% -0.071 -172% -0.091 -192%
log sh,it-τ 0.099 -0.286 -390% -0.257 -361% -0.215 -318%
log(n+g+δ)it-τ -0.197 -0.710 260% -0.651 230% -0.526 167%
log yit-τ 0.832 0.200 -76% 0.091 -89% 0.042 -95%
Avg. Abs. Bias   218%  213%  193%
Implied λ 3.68% 32.23% 776% 47.91% 1202% 63.45% 1624%
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Table 7 – Autocorrelated Measurement Error (F=10%, 1000 runs) 
 

  ρd=50% ρd=75% ρd=90% 

Variable 
True 

Coeffs Mean Bias (%) Mean Bias (%) Mean Bias (%) 
Fixed Effects 

log sk,it-τ 0.099 0.029 -71% 0.047 -52% 0.066 -33%
log sh,it-τ 0.099 -0.060 -161% -0.035 -135% -0.002 -102%
log(n+g+δ)it-τ -0.197 -0.818 315% -0.627 218% -0.537 172%
log yit-τ 0.832 0.425 -49% 0.538 -35% 0.627 -25%
Avg. Abs. Bias   149%  110%  83%
Implied λ 3.68% 17.13% 366% 12.40% 237% 9.33% 153%

Between 
log sk,it-τ 0.099 0.075 -24% 0.074 -25% 0.072 -27%
log sh,it-τ 0.099 0.094 -5% 0.086 -13% 0.078 -21%
log(n+g+δ)it-τ -0.197 -0.031 -84% -0.027 -86% -0.044 -78%
log yit-τ 0.832 0.998 20% 1.003 21% 1.007 21%
Avg. Abs. Bias   33%  36%  37%
Implied λ 3.68% 0.05% -99% -0.06% -102% -0.14% -104%

Random Effects 
log sk,it-τ 0.099 0.157 59% 0.132 33% 0.115 16%
log sh,it-τ 0.099 0.231 134% 0.184 87% 0.151 53%
log(n+g+δ)it-τ -0.197 -0.826 319% -0.493 150% -0.300 52%
log yit-τ 0.832 0.817 -2% 0.880 6% 0.923 11%
Avg. Abs. Bias   129%  69%  33%
Implied λ 3.68% 4.05% 10% 2.56% -30% 1.60% -57%

Arellano-Bond 
log sk,it-τ 0.099 -0.017 -118% 0.007 -93% 0.032 -68%
log sh,it-τ 0.099 -0.177 -279% -0.146 -248% -0.107 -208%
log(n+g+δ)it-τ -0.197 -0.367 86% -0.202 3% -0.206 5%
log yit-τ 0.832 0.426 -49% 0.537 -35% 0.599 -28%
Avg. Abs. Bias   133%  95%  77%
Implied λ 3.68% 17.09% 364% 12.43% 238% 10.24% 178%
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Table 8 - Efficiency Properties of the Estimators (F=10%, 1000 runs) 
 

Variable Mean Abs (Bias%) MSE t-stat* 
Fixed Effects 

log sk,it-τ 0.003 97% 0.0140 0.05
log sh,it-τ -0.108 209% 0.0463 -1.78
log(n+g+δ)it-τ -1.107 461% 1.1530 -1.99
log yit-τ 0.183 78% 0.4241 4.33
Average  211% 1.6373  

Between 
log sk,it-τ 0.079 20% 0.0007 4.92
log sh,it-τ 0.105 6% 0.0003 6.76
log(n+g+δ)it-τ -0.027 86% 0.0424 -0.24
log yit-τ 0.990 19% 0.0250 85.10
Average  33% 0.0683  

Random Effects 
log sk,it-τ 0.204 107% 0.0129 4.13
log sh,it-τ 0.322 226% 0.0513 7.87
log(n+g+δ)it-τ -1.361 590% 1.4855 -3.67
log yit-τ 0.699 16% 0.0187 23.74
Average  235% 1.5684  

Arellano-Bond 
log sk,it-τ -0.072 173% 0.0394 -0.77
log sh,it-τ -0.254 357% 0.1323 -2.78
log(n+g+δ)it-τ -0.642 225% 0.8059 -0.86
log yit-τ 0.095 89% 0.5484 1.52
Average  211% 1.5260  
* t-statistics averaged over 1000 runs. 
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Table 9 – Simulation Results for Alternative Estimators– 1000 runs 
 

Error-to-Truth Ratio: F=5% F=10% F=15% 
Variable True 

Coeffs 
Mean Bias (%) Mean Bias (%) Mean Bias (%) 

Random Effects 
log sk,it-τ 0.099 0.163 65% 0.204 107% 0.234 137%
log sh,it-τ 0.099 0.268 172% 0.322 226% 0.347 252%
log(n+g+δ)it-τ -0.197 -0.899 355% -1.361 590% -1.666 744%
log yit-τ 0.832 0.789 -5% 0.699 -16% 0.639 -23%
Avg. Abs. Bias   150%  235%  289%
Implied λ 3.68% 4.75% 29% 7.17% 95% 8.96% 143%

SUR (Flexible Random Effects) 
log sk,it-τ 0.099 0.133 35% 0.160 62% 0.183 85%
log sh,it-τ 0.099 0.210 113% 0.244 148% 0.268 171%
log(n+g+δ)it-τ -0.197 -0.531 169% -0.857 334% -1.092 454%
log yit-τ 0.832 0.865 4% 0.802 -4% 0.751 -10%
Avg. Abs. Bias   80%  137%  180%
Implied λ 3.68% 2.91% -21% 4.40% 20% 5.74% 56%

Between 
log sk,it-τ 0.099 0.079 -19% 0.079 -20% 0.078 -21%
log sh,it-τ 0.099 0.110 12% 0.105 6% 0.100 1%
log(n+g+δ)it-τ -0.197 -0.033 -83% -0.027 -86% -0.031 -84%
log yit-τ 0.832 0.986 18% 0.990 19% 0.993 19%
Avg. Abs. Bias   33%  33%  31%
Implied λ 3.68% 0.29% -92% 0.21% -94% 0.14% -96%

Mankiw-Romer-Weil (modified Between)a 
log sk,it-τ 0.099 0.087 -12% 0.085 -14% 0.083 -16%
log sh,it-τ 0.099 0.134 35% 0.126 27% 0.121 22%
log(n+g+δ)it-τ -0.197 -0.109 -45% -0.099 -50% -0.087 -56%
log yit-τ 0.832 0.959 15% 0.966 16% 0.971 17%
Avg. Abs. Bias   27%  27%  28%
Implied λ 3.68% 0.84% -77% 0.69% -81% 0.60% -84%

Arellano-Bover/Blundell-Bond 
log sk,it-τ 0.099 0.179 82% 0.234 137% 0.270 174%
log sh,it-τ 0.099 0.282 186% 0.330 235% 0.352 256%
log(n+g+δ)it-τ -0.197 -1.508 664% -2.200 1015% -2.515 1175%
log yit-τ 0.832 0.732 -12% 0.622 -25% 0.553 -34%
Avg. Abs. Bias   236%  353%  410%
Implied λ 3.68% 6.23% 69% 9.49% 158% 11.84% 222%
a: MRW estimates adjusted with τ=5 instead of τ=40 to ensure comparability of the point estimates with the 
other estimators. 
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